Skip to main content

Cognitive Decline Associated with Aging, Alzheimer’s Disease, and Cerebrovascular Risk: Advantages of Dynamic Imaging with MEG

  • Living reference work entry
  • First Online:

Abstract

Recent studies examining Alzheimer’s disease (AD) and aging have noted a strong association between cerebrovascular risk and cognitive decline and suggest that AD may in part be attributed to vascular insufficiency. Based on our recent results, we suggest that cognitive decline associated with cerebrovascular pathology should be characterized and if possible separated from neurodegeneration caused by amyloid plaques and neurofibrillary tangles (i.e., traditional AD-related pathology) since the progression of cerebrovascular pathology can be stopped or slowed down. Furthermore, because cerebrovascular pathology (e.g., hypertension and type 2 diabetes) coexists in most AD patients, neuroimaging techniques dependent on “uncompromised” neurovascular coupling (e.g., fMRI) will have more potential confounds to deal with in this area of study, in addition to difficulties associated with being an indirect measure of neural activity. We assert that functional measures (e.g., dynamic cortical networks, oscillatory activity, and cross-frequency coupling), as opposed to structural measures (e.g., diffusion tensor imaging – DTI), will enable earlier diagnosis of AD and mild cognitive impairment (MCI) and that MEG in particular can make important contributions to this field. A new potential area of study that relates MEG single-trial results to models of diffusion parameters in extracellular space is introduced.

This is a preview of subscription content, log in via an institution.

References

  • Aine C, Sanfratello L, Adair J, Knoefel J, Qualls C, Lundy S, Caprihan A, Stone D, Stephen J (2014) Characterization of a normal control group: are they healthy? NeuroImage 84:796–809

    Article  Google Scholar 

  • Aine CJ, Bryant JE, Knoefel JE, Adair JC, Hart B, Donahue CH, Montano R, Hayek R, Qualls C, Ranken D, Stephen JM (2010) Different strategies for auditory word recognition in healthy versus normal aging. NeuroImage 49:3319–3330

    Article  Google Scholar 

  • Aine CJ, Sanfratello L, Adair JC, Knoefel JE, Caprihan A, Stephen JM (2011) Development and decline of memory functions in normal, pathological and healthy successful aging. Brain Topogr 24:323–339

    Article  Google Scholar 

  • Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi W, Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM, Klunk WE (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    Article  Google Scholar 

  • Alavi A, Newberg AB, Souder E, Berlin JA (1993) Quantitative analysis of PET and MRI data in normal aging and Alzheimer’s disease: atrophy weighted total brain metabolism and absolute whole brain metabolism as reliable discriminators. J Nucl Med 34:1681–1687

    Google Scholar 

  • Albert M, Moss M (1996) Neuropsychology of aging: findings in humans and monkeys. In: Schneider E, Rowe JW (eds) Handbook of the biology of aging. Academic, San Diego, pp 217–233

    Google Scholar 

  • Anderson JM, Hubbard BM, Coghill GR, Slidders W (1983) The effect of advanced old age on the neurone content of the cerebral cortex. Observations with an automatic image analyser point counting method. J Neurol Sci 58:235–246

    Article  Google Scholar 

  • Arrieta J, Artalejo F (1998) Methodology, results and quality of clinical trials of tacrine in the treatment of Alzheimer’s disease: a systematic review of the literature. Age Ageing 27:161–179

    Article  Google Scholar 

  • Artero S, Tiemeier H, Prins ND, Sabatier R, Breteler MM, Ritchie K (2004) Neuroanatomical localisation and clinical correlates of white matter lesions in the elderly. J Neurol Neurosurg Psychiatry 75:1304–1308

    Article  Google Scholar 

  • Awad N, Gagnon M, Messier C (2004) The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol 26:1044–1080

    Article  Google Scholar 

  • Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113

    Article  Google Scholar 

  • Bozzali M, Filippi M, Magnani G, Cercignani M, Franceschi M, Schiatti E, Castiglioni S, Mossini R, Falautano M, Scotti G, Comi G, Falini A (2006) The contribution of voxel-based morphometry in staging patients with mild cognitive impairment. Neurology 67:453–460

    Article  Google Scholar 

  • Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  Google Scholar 

  • Broberg M, Pope KJ, Lewis T, Olsson T, Nilsson M, Willoughby JO (2008) Cell swelling precedes seizures induced by inhibition of astrocytic metabolism. Epilepsy Res 80:132–141

    Article  Google Scholar 

  • Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    Article  Google Scholar 

  • Burgmans S, van Boxtel MP, Gronenschild EH, Vuurman EF, Hofman P, Uylings HB, Jolles J, Raz N (2010) Multiple indicators of age-related differences in cerebral white matter and the modifying effects of hypertension. NeuroImage 49:2083–2093

    Article  Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40

    Article  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  Google Scholar 

  • Cohen L, Jobert A, Le Bihan D, Dehaene S (2004) Distinct unimodal and multimodal regions for word processing in the left temporal cortex. NeuroImage 23:1256–1270

    Article  Google Scholar 

  • Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8:521–545

    Article  Google Scholar 

  • Cook IA, Leuchter AF, Morgan ML, Conlee EW, David S, Lufkin R, Babaie A, Dunkin JJ, O’Hara R, Simon S, Lightner A, Thomas S, Broumandi D, Badjatia N, Mickes L, Mody RK, Arora S, Zheng Z, Abrams M, Rosenberg-Thompson S (2002) Cognitive and physiologic correlates of subclinical structural brain disease in elderly healthy control subjects. Arch Neurol 59:1612–1620

    Article  Google Scholar 

  • D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    Article  Google Scholar 

  • De Groot JC, De Leeuw FE, Oudkerk M, Van Gijn J, Hofman A, Jolles J, Breteler MM (2002) Periventricular cerebral white matter lesions predict rate of cognitive decline. Ann Neurol 52:335–341

    Article  Google Scholar 

  • Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666

    Article  Google Scholar 

  • DeCarli C, Miller BL, Swan GE, Reed T, Wolf PA, Carmelli D (2001) Cerebrovascular and brain morphologic correlates of mild cognitive impairment in the National Heart, Lung, and Blood Institute Twin Study. Arch Neurol 58:643–647

    Article  Google Scholar 

  • DeCarli C, Miller BL, Swan GE, Reed T, Wolf PA, Garner J, Jack L, Carmelli D (1999) Predictors of brain morphology for the men of the NHLBI twin study. Stroke 30:529–536

    Article  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  Google Scholar 

  • Delano-Wood L, Stricker NH, Sorg SF, Nation DA, Jak AJ, Woods SP, Libon DJ, Delis DC, Frank LR, Bondi MW (2012) Posterior cingulum white matter disruption and its associations with verbal memory and stroke risk in mild cognitive impairment. J Alzheimers Dis 29:589–603

    Article  Google Scholar 

  • Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46:1624–1635

    Article  Google Scholar 

  • Dufouil C, de Kersaint-Gilly A, Besancon V, Levy C, Auffray E, Brunnereau L, Alperovitch A, Tzourio C (2001) Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology 56:921–926

    Article  Google Scholar 

  • Elias PK, Elias MF, Robbins MA, Budge MM (2004) Blood pressure-related cognitive decline: does age make a difference? Hypertension 44:631–636

    Article  Google Scholar 

  • Engel AK, Konig P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226

    Article  Google Scholar 

  • Eschweiler GW, Leyhe T, Kloppel S, Hull M (2010) New developments in the diagnosis of dementia. Dtsch Arztebl Int 107:677–683

    Google Scholar 

  • Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD (1999) Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 354:919–920

    Article  Google Scholar 

  • Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiol Aging 30:337–352

    Article  Google Scholar 

  • Fernandez A, Maestu F, Amo C, Gil P, Fehr T, Wienbruch C, Rockstroh B, Elbert T, Ortiz T (2002) Focal temporoparietal slow activity in Alzheimer’s disease revealed by magnetoencephalography. Biol Psychiatry 52:764–770

    Article  Google Scholar 

  • Filley CM (2005) Neurobehavioral aspects of cerebral white matter disorders. Psychiatr Clin North Am 28(685–700):697–698

    Google Scholar 

  • Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, Bossini A, Fagard R, Gil-Extremera B, Laks T, Kobalava Z, Sarti C, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Birkenhager WH (2002) The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med 162:2046–2052

    Article  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    Article  Google Scholar 

  • Gunning-Dixon FM, Raz N (2000) The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 14:224–232

    Article  Google Scholar 

  • Hamalainen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography? Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Head D, Buckner RL, Shimony JS, Williams LE, Akbudak E, Conturo TE, McAvoy M, Morris JC, Snyder AZ (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14:410–423

    Article  Google Scholar 

  • Head D, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. Cereb Cortex 15:732–739

    Article  Google Scholar 

  • Hedden T, Van Dijk KR, Becker JA, Mehta A, Sperling RA, Johnson KA, Buckner RL (2009) Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 29:12686–12694

    Article  Google Scholar 

  • Helzner EP, Luchsinger JA, Scarmeas N, Cosentino S, Brickman AM, Glymour MM, Stern Y (2009) Contribution of vascular risk factors to the progression in Alzheimer disease. Arch Neurol 66:343–348

    Article  Google Scholar 

  • Hof PR, Bierer LM, Perl DP, Delacourte A, Buee L, Bouras C, Morrison JH (1992) Evidence for early vulnerability of the medial and inferior aspects of the temporal lobe in an 82-year-old patient with preclinical signs of dementia. Regional and laminar distribution of neurofibrillary tangles and senile plaques. Arch Neurol 49:946–953

    Article  Google Scholar 

  • Honer WG, Dickson DW, Gleeson J, Davies P (1992) Regional synaptic pathology in Alzheimer’s disease. Neurobiol Aging 13:375–382

    Article  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205

    Article  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Article  Google Scholar 

  • Iadecola C (2010) The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol 120:287–296

    Article  Google Scholar 

  • Iannetti GD, Wise RG (2007) BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn Reson Imaging 25:978–988

    Article  Google Scholar 

  • Inzitari D (2000) Age-related white matter changes and cognitive impairment. Ann Neurol 47:141–143

    Article  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  Google Scholar 

  • Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung MM, Gunter JL, Boeve BF, Kemp BJ, Weiner M, Petersen RC (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132:1355–1365

    Article  Google Scholar 

  • Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188

    Article  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Kokmen E (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51:993–999

    Article  Google Scholar 

  • Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999) Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397–1403

    Article  Google Scholar 

  • Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, DeCarli C (2004) Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke 35:1857–1861

    Article  Google Scholar 

  • Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836

    Article  Google Scholar 

  • Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, Gorno-Tempini ML, Schuff N (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234:851–859

    Article  Google Scholar 

  • Kalaria RN, Ballard C (1999) Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 13(Suppl 3):S115–S123

    Article  Google Scholar 

  • Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973

    Article  Google Scholar 

  • Kemper T (1984) Neuroanatomical and neuropathological changes in normal aging and in dementia. In: Albert M (ed) Clinical neurology of aging. Oxford University Press, New York, pp 9–52

    Google Scholar 

  • Kemper TL (1993) The relationship of cerebral cortical changes to nuclei in the brainstem. Neurobiol Aging 14:659–660

    Article  Google Scholar 

  • Kennedy KM, Raz N (2009) Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Res 1297:41–56

    Article  Google Scholar 

  • Kesslak JP, Nalcioglu O, Cotman CW (1991) Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41:51–54

    Article  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319

    Article  Google Scholar 

  • Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci U S A 97:1867–1872

    Article  Google Scholar 

  • Kuo HK, Lipsitz LA (2004) Cerebral white matter changes and geriatric syndromes: is there a link? J Gerontol A Biol Sci Med Sci 59:818–826

    Article  Google Scholar 

  • Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE (2005) An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol 94:1904–1911

    Article  Google Scholar 

  • Lee C, Lopez OL, Becker JT, Raji C, Dai W, Kuller LH, Gach HM (2009) Imaging cerebral blood flow in the cognitively normal aging brain with arterial spin labeling: implications for imaging of neurodegenerative disease. J Neuroimaging 19:344–352

    Article  Google Scholar 

  • Lisman JE, Idiart MA (1995) Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267:1512–1515

    Article  Google Scholar 

  • Manschot SM, Brands AM, van der Grond J, Kessels RP, Algra A, Kappelle LJ, Biessels GJ (2006) Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes 55:1106–1113

    Article  Google Scholar 

  • Moscovitch M, Winocur G (1995) Frontal lobes, memory, and aging. Ann N Y Acad Sci 769:119–150

    Article  Google Scholar 

  • Murphy DG, DeCarli CD, Daly E, Gillette JA, McIntosh AR, Haxby JV, Teichberg D, Schapiro MB, Rapoport SI, Horwitz B (1993) Volumetric magnetic resonance imaging in men with dementia of the Alzheimer type: correlations with disease severity. Biol Psychiatry 34:612–621

    Article  Google Scholar 

  • Nordahl CW, Ranganath C, Yonelinas AP, Decarli C, Fletcher E, Jagust WJ (2006) White matter changes compromise prefrontal cortex function in healthy elderly individuals. J Cogn Neurosci 18:418–429

    Article  Google Scholar 

  • Oh H, Mormino EC, Madison C, Hayenga A, Smiljic A, Jagust WJ (2011) Beta-Amyloid affects frontal and posterior brain networks in normal aging. NeuroImage 54:1887–1895

    Article  Google Scholar 

  • Oosterman JM, Sergeant JA, Weinstein HC, Scherder EJ (2004) Timed executive functions and white matter in aging with and without cardiovascular risk factors. Rev Neurosci 15:439–462

    Article  Google Scholar 

  • Palop JJ, Chin J, Mucke L (2006) A network dysfunction perspective on neurodegenerative diseases. Nature 443:768–773

    Article  Google Scholar 

  • Pantoni L, Poggesi A, Inzitari D (2007) The relation between white-matter lesions and cognition. Curr Opin Neurol 20:390–397

    Article  Google Scholar 

  • Peters A, Moss MB, Sethares C (2000) Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol 419:364–376

    Article  Google Scholar 

  • Peters A, Rosene DL (2003) In aging, is it gray or white? J Comp Neurol 462:139–143

    Article  Google Scholar 

  • Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194

    Article  Google Scholar 

  • Petersen RC, Parisi JE, Dickson DW, Johnson KA, Knopman DS, Boeve BF, Jicha GA, Ivnik RJ, Smith GE, Tangalos EG, Braak H, Kokmen E (2006) Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63:665–672

    Article  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    Article  Google Scholar 

  • Qiu C, Winblad B, Fratiglioni L (2005) The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 4:487–499

    Article  Google Scholar 

  • Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–161

    Article  Google Scholar 

  • Rosene DL (1993) Comparing age-related changes in the basal forebrain and hippocampus of the rhesus monkey. Neurobiol Aging 14:669–670

    Article  Google Scholar 

  • Scheibel AB, Duong TH, Jacobs R (1989) Alzheimer’s disease as a capillary dementia. Ann Med 21:103–107

    Article  Google Scholar 

  • Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB (1975) Progressive dendritic changes in aging human cortex. Exp Neurol 47:392–403

    Article  Google Scholar 

  • Schmidt R, Scheltens P, Erkinjuntti T, Pantoni L, Markus HS, Wallin A, Barkhof F, Fazekas F (2004) White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease. Neurology 63:139–144

    Article  Google Scholar 

  • Schmidt R, Schmidt H, Fazekas F (2000) Vascular risk factors in dementia. J Neurol 247:81–87

    Article  Google Scholar 

  • Schneider JA, Bennett DA (2010) Where vascular meets neurodegenerative disease. Stroke 41:S144–S146

    Article  Google Scholar 

  • Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  Google Scholar 

  • Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, Mintun MA (2010) Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 67:584–587

    Article  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  Google Scholar 

  • Small G, Leiter F (1998) Neuroimaging for diagnosis of dementia. J Clin Psychiatry 59(Suppl 11):4–7

    Google Scholar 

  • Small GW (1998) The pathogenesis of Alzheimer’s disease. J Clin Psychiatry 59(Suppl 9):7–14

    Google Scholar 

  • Smith CD, Chebrolu H, Wekstein DR, Schmitt FA, Jicha GA, Cooper G, Markesbery WR (2007) Brain structural alterations before mild cognitive impairment. Neurology 68:1268–1273

    Article  Google Scholar 

  • Steffens DC (1997) MRI and MRS in dementia. In: Krishnan KR, Doraiswamy PM (eds) Brain imaging in clinical psychiatry. Marcel Dekker Inc, New York, pp 503–532

    Google Scholar 

  • Stern EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT (2004) Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 24:4535–4540

    Article  Google Scholar 

  • Sykova E (2004) Extrasynaptic volume transmission and diffusion parameters of the extracellular space. Neuroscience 129:861–876

    Article  Google Scholar 

  • Taylor WD, MacFall JR, Provenzale JM, Payne ME, McQuoid DR, Steffens DC, Krishnan KR (2003) Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors. AJR Am J Roentgenol 181:571–576

    Article  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  Google Scholar 

  • Tisserand DJ, Jolles J (2003) On the involvement of prefrontal networks in cognitive ageing. Cortex 39:1107–1128

    Article  Google Scholar 

  • Tullberg M, Fletcher E, DeCarli C, Mungas D, Reed BR, Harvey DJ, Weiner MW, Chui HC, Jagust WJ (2004) White matter lesions impair frontal lobe function regardless of their location. Neurology 63:246–253

    Article  Google Scholar 

  • Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14:72–80

    Article  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    Article  Google Scholar 

  • Van Hoesen G, Damasio A (1987) Neuronal correlates of cognitive impairment in Alzheimer’s disease. In: Mountcastle V et al.(eds) Handbook of physiology: the nervous system, vol V. American Physiological Society, Bethesda, pp 871–898

    Google Scholar 

  • van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J (1991) Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114(Pt 2):761–774

    Article  Google Scholar 

  • Voytko ML (1998) Nonhuman primates as models for aging and Alzheimer’s disease. Lab Anim Sci 48:611–617

    Google Scholar 

  • Walker LC (1997) Animal models of cerebral beta-amyloid angiopathy. Brain Res Brain Res Rev 25:70–84

    Article  Google Scholar 

  • Warsch JR, Wright CB (2010) The aging mind: vascular health in normal cognitive aging. J Am Geriatr Soc 58(Suppl 2):S319–S324

    Article  Google Scholar 

  • West RL (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol Bull 120:272–292

    Article  Google Scholar 

  • Whitwell JL, Petersen RC, Negash S, Weigand SD, Kantarci K, Ivnik RJ, Knopman DS, Boeve BF, Smith GE, Jack CR Jr (2007) Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol 64:1130–1138

    Article  Google Scholar 

  • Willott J (1997) Neurogerontology: the aging nervous system. In: Ferraro K (ed) Gerontology: perspectives and issues. Springer, New York, pp 68–96

    Google Scholar 

  • Zhang HY, Wang SJ, Xing J, Liu B, Ma ZL, Yang M, Zhang ZJ, Teng GJ (2009) Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease. Behav Brain Res 197:103–108

    Article  Google Scholar 

  • Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28:202–208

    Article  Google Scholar 

  • Zlokovic BV (2008) New therapeutic targets in the neurovascular pathway in Alzheimer’s disease. Neurotherapeutics 5:409–414

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institute on Aging, award number R01 AG029495. This work was also supported in part by: (1) National Institute of General Medical Sciences 2P20GM103472-06; (2) National Institute on Aging award number R01AG020302; (3) the Radiology Department at UNM SOM; and (4) the New Mexico VA Healthcare System. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes on Aging or the National Institutes of Health. We thank Selma Supek for her insightful comments on an earlier version of this commentary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl J. Aine .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aine, C.J., Adair, J.C., Knoefel, J.E., Sanfratello, L., Stephen, J.M. (2019). Cognitive Decline Associated with Aging, Alzheimer’s Disease, and Cerebrovascular Risk: Advantages of Dynamic Imaging with MEG. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics