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Abstract. Methods for the seismic demands evaluation of structures require
iterative procedures. Many studies dealt with the development of different
inelastic spectra with the aim to simplify the evaluation of inelastic deformations
and performance of structures. Recently, the concept of inelastic spectra has
been adopted in the global scheme of the Performance-Based Seismic Design
(PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal
Pushover Analysis (MPA) has been proved to provide accurate results for
inelastic buildings to a similar degree of accuracy than the Response Spectrum
Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a
simplified nonlinear procedure for evaluation of the seismic demand of struc-
tures is proposed with its applicability to multi-degree-of-freedom (MDOF)
systems. The basic concept is to write the equation of motion of (MDOF) system
into series of normal modes based on an inelastic modal decomposition in terms
of ductility factor. The accuracy of the proposed procedure is verified against the
Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal
Response History Analysis (UMRHA) of a 9-story steel building subjected to
El-Centro 1940 (N/S) as a first application. The comparison shows that the new
theoretical approach is capable to provide accurate peak response with those
obtained when using the NL-THA analysis. After that, a simplified nonlinear
spectral analysis is proposed and illustrated by examples in order to describe
inelastic response spectra and to relate it to the capacity curve (Pushover curve)
by a new parameter of control, called normalized yield strength coefficient (g).
In the second application, the proposed procedure is verified against the
NL-THA analysis results of two buildings for 80 selected real ground motions.

List of Symbols

M Mass matrice
C Damping matrice
F Resisting force vector
€xg tð Þ Earthquake acceleration
mi Mass of the ith level
Fi Resisting force of the ith level
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ke;i Elastic stiffness of the ith level
kp;i Postyield stiffness of the ith level
Qi Yield strength of the ith level
xy;i Yield displacement of the ith level
Kp Postyield stiffness matrix
Q Yield strength vector
z Dimensionless variable
A = 1
B = 0.1
k = 0.9
b = 6
cn tð Þ Modal coordinate
/n nth natural vibration mode of the structure
xn Natural vibration frequency
nn Damping ratio
an Post-to-preyield stiffness ratio
Qn ¼ /t

nQ Yield strength

M�
n ¼ Ln

Cn

Effective mass

Cn ¼ /T
nm i=/T

nm/n Modal participation factor

Ln ¼ /T
nm i

ln Ductility demand
Dn;m Peak displacement
Dn;y Yield displacement
qn Yield strength coefficient
San Spectral acceleration
Vbn Base shear
/rn Amplitude of /n
xrn Roof displacement

1 Introduction

Several simple evaluation methods have been proposed as an alternative to the complex
nonlinear dynamic analysis to estimate the seismic demands of structures (Gülkan and
Sözen 1974; Freeman et al. 1975; Newmark and Hall 1982; Fajfar and Fischinger
1988; Kowalsky 1994; Sasaki et al. 1998; Fajfar 1999; Gupta and Kunnath 2000;
Albanesi et al. 2000; Priestley and Kowalsky 2000; Miranda 2001; Chopra and Goel
2001; Lin and Chang 2003; Maja and Fajfar 2012; Chikh et al. 2014; Zerbin and Aprile
2015; Kazaz 2016). The basic idea of these methods is to relate the structural capacity
to the physical basis of elastic or inelastic demand spectra, as the Capacity Spectrum
Method (ATC-40 1996) and its different implementations.

The seismic demands assessment methods are generally based on the nonlinear
static analysis, where the structure is subjected to lateral loads increasing monotonically
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over the entire height until a predetermined target displacement. The distribution of
these forces and the target displacement are based on the assumption that the response
is controlled only by the fundamental mode, knowing that constant distribution of
forces will not capture the contribution of higher modes in the overall structural
response. Several researchers have proposed adaptive force distributions that attempt to
follow more closely the distribution of inertial forces over time (Fajfar and Fischinger
1988; Baracci et al. 1997; Gupta and Kunnath 2000). Attempts have also been made to
consider more than the fundamental mode of vibration in the Pushover analysis (Paret
et al. 1996; Sasaki et al. 1998; Gupta and Kunnath 2000; Matsumori et al. 1999;
Chopra and Goel 2001).

In this paper an inelastic equation of motion of MDOF system will be rewritten in
terms of the ductility to obtain an approximate multimodal dynamic analysis (AMDA)
that consider the ductility factor as the inelastic response of the system.

2 Approximate Multimodal Dynamic Analysis

2.1 Inelastic Modal Decomposition in Terms of Ductility

The matrix form of differential equations governing the response of a MDOF system to
earthquake induced ground motion can be written as:

M€x tð ÞþC _x tð ÞþF x; sign _xð Þ ¼ �Mi€xg tð Þ ð1Þ

where M and C are the mass and damping matrices respectively, F denotes the resisting
force vector, i is the vector of earthquake influence coefficients and €xg tð Þ denotes the
earthquake acceleration. The damping matrix C would not be needed in this analysis of
earthquake response; instead modal damping ratios suffice.

The resisting force vector F is defined as the sum of the linear and the hysteretic
parts as represented in Fig. 1 (Benazouz et al. 2012, 2016).

F ¼ KpxþQz x; _xð Þ ð2Þ

Fig. 1. Example of the resisting force of a MDOF system
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where, mi; Fi; ke;i; kp;i;Qi and xy;i are the mass, resisting force, elastic stiffness, post-
yield stiffness, yield strength and yield displacement of the ith level, respectively.

In Eq. (2), the resisting force is a vector for MDOF systems, Kp is the postyield
stiffness matrix, Q the yield strength vector, and z a dimensionless variable that
characterizes the Bouc-Wen model of hysteresis (Wen 1976). It is given by:

_z ¼ _x
xy

A� zj jk Bsign _xzð Þþ bð Þ
h i

ð3Þ

where, xy is the yield displacement vector; A;B; k and b are the parameters that control
the shape of the hysteresis loop which are taken as: A ¼ 1;B ¼ 0:1; k ¼ 0:9 and b ¼ 6
for bilinear system, sign :ð Þ is the sign function (Wen 1976).

Using Eqs. (1) and (2) we get:

M€x tð ÞþC _x tð ÞþKpx tð ÞþQz x; _xð Þ ¼ �Mi€xg tð Þ ð4Þ

The decomposition of the MDOF system as a series of normal modes is reasonable.
Equation (5) is used to involve the influence of higher modes in the peak and overall
response of the structure (Chopra 2007).

x tð Þ ¼
X

n
xn tð Þ ¼

X
n
/ncn tð Þ ð5Þ

where: cn tð Þ is the modal coordinate and /n is the nth natural vibration mode of the
structure.

Substituting Eq. (4) into Eq. (5), using the mass, stiffness and classical damping
orthogonality mode properties, we obtain the following differential equation for the
single-degree-of-freedom (SDOF) system response:

€cn tð Þþ 2nnxn _cn tð Þþ anx
2
nc tð Þþ Qnzn c; _cð Þ

M�
n

¼ �Cn€xg tð Þ ð6Þ

where, xn is the natural vibration frequency, nn the damping ratio, an the

post-to-preyield stiffness ratio, Qn ¼ /t
nQ the yield strength, M�

n ¼ Ln
Cn
, the effective

mass, Cn ¼ /T
nm i=/T

nm/n the modal participation factor and Ln ¼ /T
nm i for the nth

natural vibration mode.
The solution, cn, of Eq. (6) is given by (Chopra 2007):

cn tð Þ ¼ CnDn tð Þ ð7Þ

With this approximation, the solution of Eq. (6) can be expressed by Eq. (7), where
the displacement Dn tð Þ of the SDOF system can be assessed by the following equation:

€Dn tð Þþ 2nnxn _Dn tð Þþ anx
2
nD tð Þþ Qnzn D; _D

� �
CnM�

n
¼ �€xg tð Þ ð8Þ
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This ductility demand (or ductility factor) for the SDOF bilinear system is
expressed as:

ln ¼
Dn;m

Dn;y
ð9Þ

where: Dn;m is the peak displacement and Dn;y is the yield displacement.
It seems worth to associate for each instantaneous inelastic displacement Dn tð Þ an

instantaneous ductility factor ln tð Þ defined as:

Dn tð Þ ¼ ln tð Þ � Dn;y
_Dn tð Þ ¼ _ln tð Þ � Dn;y
€Dn tð Þ ¼ €ln tð Þ � Dn;y

8<
: ð10Þ

Equation (8) can be rewritten in terms of ductility factor ln, by substituting
Eq. (10) in Eq. (8) and dividing by Dn;y, which gives:

€ln þ 2nnxn _ln þ anx
2
nln þ

qngzn l; _lð Þ
Dn;y

¼ � 1
Dn;y

€xg tð Þ ð11Þ

qn is the yield strength coefficient for the nth natural vibration mode of the structure
(defined as yield strength divided by Ln).

qn ¼ Qn

Ln
ð12Þ

Also, Eq. (3) may be expressed in terms of ductility factor ln as:

_z ¼ _ln A� zj jk B sign _xzð Þþ bð Þ
h i

ð13Þ

The term qng
Dn;y

in Eq. (11) is rewritten as:

qng
Dn;y

¼ x2
n 1� anð Þ ð14Þ

Substituting Eq. (14) into Eq. (11) gives:

€ln þ 2nnxn _ln þ anx
2
nln þx2

n 1� anð Þzn l; _lð Þ ¼ �x2
n 1� anð Þ
qng

€xg tð Þ ð15Þ

It can be observed from Eq. (15) that for a given ground acceleration, ln tð Þ depends
on nn;xn; an and qn of the nth natural vibration mode.

Based on Eqs. (5) and (7) and dividing by Dn;y give the ductility demand and the
displacement of the original structure:
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l tð Þ ¼
X

n
/nCnln tð Þ x tð Þ ¼

X
n
/nCnDn tð Þ ð16Þ

Figure 2 illustrates the technique of uncoupling the equation of motion in terms of
ductility factor characterizing the MDOF system. The response of a MDOF system to
earthquake ground motion can be computed as a function of time by the procedure just
developed the approximate multimodal dynamic analysis (AMDA), which is detailed
in the next application. The proposed approximate analysis consists to solve Eq. (15)

for €xg tð Þ that will be multiplied by a new factor �x2
n 1� anð Þ=qng to constitute a new

excitation for the structure to determine finally the total response quantities of interest
by using Eq. (16).

2.2 Application

In recent years Chopra and Goel (2002) assessed the strength variation of several
procedures including the modal Pushover analysis (MPA), that they developed.
The MPA analysis is based on structural dynamics theory. Its accuracy and reliability
in estimating the peak response of inelastic MDOF systems has been evaluated
extensively by the authors. Goel and Chopra (2004) analyzed and evaluated the
response of several procedures for nonlinear static analysis, including Pushover anal-
ysis where only fundamental mode was taken into account.

The accurate of the proposed procedure is evaluated for a 9-story SAC steel
building (Chopra and Goel 2001). The ‘exact’ response of a rigorous nonlinear time
history analysis (NL-THA) is compared with the response obtained by the approximate
multimodal dynamic analysis (AMDA).

The 9-story structure meets the seismic code requirements and represents typical
medium-rise buildings designed for the Los Angeles, California region. The Pushover
curves of this structure presented in (Chopra and Goel 2001) are sufficient for the
objectives of this study. The selected structure is tested and detailed in this section
when subjected to one time and half (1.5) El Centro 1940 ground motion. The prop-
erties of the first three modes of vibration are summarized in Table 1.

Unit mass 

= Σ …  … … 

Unit mass Unit mass 

Fig. 2. Approximate multimodal dynamic procedure for MDOF structures
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The capacity curves of the three first modes are shown in Fig. 3. Next, the Pushover
curves are transformed to equivalent SDOF systems (see Fig. 3). The conversion of the
idealized Pushover curve to the force-displacement, (see Fig. 3(b)) for the nth-mode of
inelastic SDOF system is obtained by using F�n � Dn;y

� �
:

San ¼ Vbn

M�
n
¼ F�

n ; Dn ¼ xrn
Cn/rn

ð17Þ

In which San is the spectral acceleration, Vbn the base shear, /rn is the amplitude of
/n and xrn the roof displacement.

The approximate multimodal dynamic analysis of the structure starts with obtaining
the multimodal Pushover curves of the MDOF system subjected to lateral forces dis-
tributed over the building height. In the proposed procedure, the movements will be

Table 1. Properties of modal inelastic SDOF systems

Properties Mode 1 Mode 2 Mode 3

Ln kgð Þ 2736789 −920860 696400
Cn 1.36 −0.5309 0.2406
M�

n kgð Þ 3740189 488839.1 167531.5
Dn;y cmð Þ 26.51 18.65 19.12
Tn secð Þ 2.2671 0.8525 0.4927
an 0.19 0.13 0.14
kn kN=cmð Þ 210.3867 500.2020 1132.6086
nn %ð Þ 1.948 1.103 1.136
Qn kNð Þ 6168.977 4374.343 4414.347
qn gð Þ 0.168 0.912 2.685
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Fig. 3. Modal pushover curves and capacity diagrams for the first three modes
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decomposed in the form of a series of normal modes in terms of the ductility demand.
Equation (15) is solved, and the resulting ductility demand history is decomposed into
its “modal” components. The obtained response histories of ductility demand and roof
displacements for the three first modes of the selected building subject to 1.5 times El
Centro ground motion (N/S) component (PGA ¼ 0:32 g, PGV ¼ 36:14 cm/sec, and
PGD ¼ 21:34 cm) are shown in Fig. 4.
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Fig. 4. Response histories of ductility demand and roof displacement from the proposed
procedure for 1.5 � El Centro ground motion: first three modal responses and total (all modes)
response

Fig. 5. Total response histories of roof displacement for 1.5 � El Centro ground motion from
the UMRHA and NL-THA (Chopra and Goel 2001)
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The proposed procedure is evaluated by comparing the computed displacements
histories according to Eqs. (15) and (16), considering three modes with those estimated
by the NL-THA analysis and the Uncoupled Modal Response History Analysis
(UMRHA) that was developed by Chopra and Goel (2001) (see Figs. 4 and 5).

Following the AMDA procedure aforementioned, the total response is determined
using the UMRHA and NL-THA (“exact”). Figure 4 shows the ductility demand, also
is shown in the same figure the roof displacements time histories. It is clear from the
comparison shown in Figs. 4 and 5 that the AMDA gives results in good agreement
with the NL-THA.

3 Conclusion

An approximate procedure for seismic demands assessment of MDOF system has been
developed and its accuracy was verified by examples. An inelastic modal decompo-
sition in terms of ductility has been developed to construct the Approximate Multi-
modal Dynamic Analysis. That was verified using the seismic response of an example
steel frame structure for which capacity curve data is available. The results indicated
that more reliable displacement predictions are obtained from the proposed method.

The base shear-roof displacement (Vbn � xrn) curve is developed from a Pushover
analysis. This Pushover curve is idealized as a bilinear force-deformation relation for
the nth mode of inelastic SDOF system. This idealization is used to determine the yield
strength coefficient qn and the post-to-preyield stiffness ratio an to estimate the ductility
demand. The peak deformation of this SDOF system, determined by the Approximate
Multimodal Dynamic Analysis, is used to determine the target value of roof dis-
placement at which the seismic response is determined by the Pushover analysis. The
total demand is determined by the sum of responses of the first three modes.
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