Skip to main content

Chapter 3 The Laplace Operator and Harmonic Differential Forms

  • Chapter
  • First Online:
Riemannian Geometry and Geometric Analysis

Part of the book series: Universitext ((UTX))

  • 7189 Accesses

Abstract

This chapter introduces basic concepts and methods from analysis, in particular, the Laplace-Beltrami operator. The essential properties of its spectrum are shown and relationships with the underlying geometry are discussed. The discussion then turns to the operation of the Laplace operator on differential forms and de Rham cohomology groups, together with the essential tools from elliptic PDE for treating these groups. The existence of harmonic forms representing cohomology classes is proved both by a variational method and by the heat flow method. The spectrum of the Laplacian on differential forms is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please do not confuse the H of the Sobolev space H p 1,2(M) (which may stand for Hilbert) with the H of the cohomology group H p (which stands for “homology”).

  2. 2.

    In the bibliography, a superscript will indicate the edition of a monograph. For instance,72017 means 7th edition, 2017.

Bibliography

  1. M. Berger, P. Gauduchon, and E. Mazet. Le spectre d’une varieté riemannienne. Springer, Lecture Notes in Mathematics 194, 1974.

    Google Scholar 

  2. I. Chavel. Eigenvalues in Riemannian geometry. Academic Press, 1984.

    MATH  Google Scholar 

  3. J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in Analysis, pages 195–199. Princeton Univ.Press, 1970.

    Google Scholar 

  4. R. Courant and D. Hilbert. Methoden der Mathematischen Physik I. Springer, 1924,31968.

    Google Scholar 

  5. J.Jost D.Horak. Spectra of combinatorial laplace operators on simplicial complexes. Adv. Math., 244:303–336, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Eckmann. Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv., 17(1):240–255, December 1944.

    Google Scholar 

  7. H. Federer. Geometric measure theory. Springer, 1979.

    MATH  Google Scholar 

  8. E. Hsu. Stochastic analysis on manifolds. Amer. Math. Soc., 2002.

    Book  MATH  Google Scholar 

  9. J. Jost. Postmodern analysis. Springer,32005.

    Google Scholar 

  10. J. Jost and X. Li-Jost. Calculus of variations. Cambridge Univ. Press, 1998.

    MATH  Google Scholar 

  11. P. Li. On the Sobolev constant and the p-spectrum of a compact Riemannian manifold. Ann.Sci.Ec.Norm.Sup., Paris, 13:419–435, 1980.

    Article  MathSciNet  Google Scholar 

  12. P. Li and S. T. Yau. Estimates of eigenvalues of a compact Riemannian manifold. AMS Proc.Symp.Pure Math., 36:205–240, 1980.

    Google Scholar 

  13. S.T. Yau. Isoperimetric constants and the first eigenvalue of a compact manifold. Ann.Sci.Ec.Norm.Sup.Paris, 8:487–507, 1975.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jost, J. (2017). Chapter 3 The Laplace Operator and Harmonic Differential Forms. In: Riemannian Geometry and Geometric Analysis. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-61860-9_3

Download citation

Publish with us

Policies and ethics