Skip to main content

Microbial Exposures in Residential Homes

  • Chapter
  • First Online:
  • 740 Accesses

Abstract

Since we spend most of our time indoors, the characteristics of the indoor environment, and in particular, the characteristics of the microbial environment, have an impact in our health and well-being. The composition of the indoor microbial environment in homes is determined by regional factors like climate, building factors (e.g. ventilation or presence of mould or dampness) or the occupants and their indoor activities (e.g. crowdedness, pet ownership, indoor smoking, cleanliness or use of gas for cooking). The “westernization” process has modified some of these factors leading to changes in the characteristics of the indoor microbial environment and a consequent impact in our health. To date, most studies have investigated the beneficial and negative effects of the indoor microbial environment on respiratory and allergic health, mainly among children. Nevertheless, some recent studies point to a potential impact on mental health. Among children and adults, the exposure to mould or damp at home seems to be a risk factor for the development of asthma and allergies, and may have a negative effect on neuropsychological development and mood disorders. On the other hand, growing up in a farm protects against allergies and asthma. Nevertheless, for children and adults, the health effects of the indoor microbial environment are only consistent in observation/report of indoor moisture damage or when comparing farming vs non-farming homes. When actual measures targeting indoor microbial exposure in (sub-) urban areas are included, the picture becomes less clear and the associations appear inconsistent. Similarly, the presence of mould or dampness at home has been associated with lower cognitive function and with behavioural problems in children. Among adults, living in damp homes may be related with mood disorders. However, the inclusion of actual measures of the indoor microbial environment in human studies does not confirm these associations. Further epidemiological studies are needed to obtain sufficient evidence of the effects of the indoor microbial environment on mental health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aagaard K et al. (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):p.237ra65

    Article  Google Scholar 

  • Adams RI et al. (2013) Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J 7(7):1262–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amend AS et al. (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107(31):13748–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asher MI et al. (2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 368(9537):733–743

    Article  PubMed  Google Scholar 

  • Bakolis I et al. (2012) Respiratory health and endotoxin: associations and modification by CD14/-260 genotype. Eur Resp J39(3):573–81

    Article  CAS  Google Scholar 

  • Barberán A et al. (2015) The ecology of microscopic life in household dust. Proc R Soc B 282:1814

    Article  Google Scholar 

  • Benndorf D et al. (2008) Identification of spore allergens from the indoor mould Aspergillus versicolor. Allergy 63(4):454–460

    Article  CAS  PubMed  Google Scholar 

  • Bornehag CG et al. (2001) Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to “dampness” in buildings and health effects (NORDDAMP). Indoor Air 11(2):72–86

    Article  CAS  PubMed  Google Scholar 

  • Borre YE et al. (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20(9):509–518

    Article  PubMed  Google Scholar 

  • Burney PG et al. (1994) The European Community Respiratory Health Survey. Eur Res J 7(5):954–60

    Article  CAS  Google Scholar 

  • Cai G-H et al. (2011) Fungal DNA, allergens, mycotoxins and associations with asthmatic symptoms among pupils in schools from Johor Bahru, Malaysia. Pediatr Allergy Immunol 22(3):290–7

    Article  PubMed  Google Scholar 

  • Campo P et al. (2006) Influence of dog ownership and high endotoxin on wheezing and atopy during infancy. J Allergy Clin Immunol 118(6):1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas L et al. (2013) Endotoxin, extracellular polysaccharides, and β(1-3)-glucan concentrations in dust and their determinants in four European birth cohorts: results from the HITEA project. Indoor Air 23(3):208–18

    Article  CAS  PubMed  Google Scholar 

  • Casas L, Tiesler C et al. (2013) Indoor factors and behavioural problems in children: the GINIplus and LISAplus birth cohort studies. Int J Hyg Environ Health 216(2):146–54

    Article  PubMed  Google Scholar 

  • Casas L, Tischer C et al. (2013) Early life microbial exposure and fractional exhaled nitric oxide in school-age children: a prospective birth cohort study. Environ Health 12(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas L, Torrent M et al. (2013) Early life exposures to home dampness, pet ownership and farm animal contact and neuropsychological development in 4 year old children: a prospective birth cohort study. Int J Hyg Environ Health 216(6):690–7

    Article  PubMed  Google Scholar 

  • Chen C-M et al. (2012) Geographical variation and the determinants of domestic endotoxin levels in mattress dust in Europe. Indoor Air 22(1):24–32

    Article  CAS  PubMed  Google Scholar 

  • Chipps BE, Bacharier LB, Harder JM (2011) Phenotypic expressions of childhood wheezing and asthma: implications for therapy. J Pediatrics 158(6):878–884. e1

    Article  Google Scholar 

  • Claeson A-S, Nordin S, Sunesson A-L (2009) Effects on perceived air quality and symptoms of exposure to microbially produced metabolites and compounds emitted from damp building materials. Indoor Air 19(2):102–112

    Article  CAS  PubMed  Google Scholar 

  • Corps KN et al. (2010) Neurotoxic, inflammatory, and mucosecretory responses in the nasal airways of mice repeatedly exposed to the macrocyclic trichothecene mycotoxin roridin A: dose-response and persistence of injury. Toxicol Pathol 38(3):429–451

    Article  CAS  PubMed  Google Scholar 

  • Cui K et al. (2009) Effects of prenatal immune activation on hippocampal neurogenesis in the rat. Schizophren Res 113(2-3):288–297

    Article  Google Scholar 

  • Dannemiller KC et al. (2014) Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24(3):236–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dannemiller KC et al. (2016a) Indoor microbial communities: influence on asthma severity in atopic and nonatopic children. J Allergy Clin Immunol 138(1):76–83. e1

    Article  PubMed  PubMed Central  Google Scholar 

  • Dannemiller KC et al. (2016b) Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air 26(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • DellaGioia N, Hannestad J (2010) A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev 34(1):130–143

    Article  CAS  PubMed  Google Scholar 

  • Doi K, Uetsuka K (2011) Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci 12(8):5213–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douwes J, Pearce N, Heederik D (2002) Does environmental endotoxin exposure prevent asthma? Thorax 57(1):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douwes J et al. (2006) Does early indoor microbial exposure reduce the risk of asthma? The Prevention and Incidence of Asthma and Mite Allergy birth cohort study. J Allergy Clin Immunol 117(5):1067–1073

    Article  PubMed  Google Scholar 

  • Ege MJ et al. (2011) Exposure to environmental microorganisms and childhood asthma. New Engl J Med 364(8):701–9

    Article  CAS  PubMed  Google Scholar 

  • Eisenberger NI et al. (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68(8):748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisk WJ, Lei-Gomez Q, Mendell MJ (2007) Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air 17(4):284–296

    Article  CAS  PubMed  Google Scholar 

  • Gehring U et al. (2001) Beta(1-->3)-glucan in house dust of German homes: housing characteristics, occupant behavior, and relations with endotoxins, allergens, and molds. Environ Health Perspect 109(2):139–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring U et al. (2004) Levels and predictors of endotoxin in mattress dust samples from East and West German homes. Indoor Air 14(4):284–92

    Article  CAS  PubMed  Google Scholar 

  • Gehring U et al. (2007) Bacteria and mould components in house dust and children’s allergic sensitisation. Eur Resp J 29(6):1144–1153

    Article  CAS  Google Scholar 

  • Genuneit J (2012) Exposure to farming environments in childhood and asthma and wheeze in rural populations: a systematic review with meta-analysis. Pediatr Allergy Immunol 23(6):509–18

    Article  PubMed  Google Scholar 

  • Gillespie J et al. (2006) Endotoxin exposure, wheezing, and rash in infancy in a New Zealand birth cohort. J Allergy Clin Immunol 118(6):1265–70

    Article  CAS  PubMed  Google Scholar 

  • Giovannangelo M et al. (2007) Determinants of house dust endotoxin in three European countries – the AIRALLERG study. Indoor Air 17(1):70–79

    Article  CAS  PubMed  Google Scholar 

  • Gunnbjörnsdóttir MI et al. (2006) Prevalence and incidence of respiratory symptoms in relation to indoor dampness: the RHINE study. Thorax 61(3):221–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Horick N et al. (2006) Home endotoxin exposure and wheeze in infants: correction for bias due to exposure measurement error. Environ Health Perspect 114(1):135–40

    PubMed  Google Scholar 

  • Hospodsky D et al. (2012) Human occupancy as a source of indoor airborne bacteria. PLoS One 7(4):e34867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugg TT et al. (2008) Exposure to animals and the risk of allergic asthma: a population-based cross-sectional study in Finnish and Russian children. Environ Health 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Human Microbiome Project Consortium, T.H.M.P (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–14

    Article  Google Scholar 

  • Institute of Medicine (2004) Damp Indoor Spaces and Health. The National Academies Press, Washington, DC, https://doi.org/10.17226/11011

    Google Scholar 

  • Iossifova YY et al. (2007) House dust (1-3)-beta-D-glucan and wheezing in infants. Allergy 62(5):504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iossifova YY et al. (2009) Mold exposure during infancy as a predictor of potential asthma development. Ann Allergy Asthma Immunol 102(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Islam Z et al. (2007) Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin a: kinetics and potentiation by bacterial lipopolysaccharide coexposure. Toxicol Sci 98(2):526–541

    Article  CAS  PubMed  Google Scholar 

  • Jedrychowski W et al. (2011) Cognitive function of 6-year old children exposed to mold-contaminated homes in early postnatal period. Prospective birth cohort study in Poland. Physiol Behav 104(5):989–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchongkittiphon W et al. (2015) Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect 123(1):6–20

    Article  CAS  PubMed  Google Scholar 

  • Karunasena E et al. (2010) Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment. Mycopathologia 170(6):377–390

    Article  CAS  PubMed  Google Scholar 

  • Karvonen AM et al. (2009) Confirmed moisture damage at home, respiratory symptoms and atopy in early life: a birth-cohort study. Pediatrics 124(2):e329–338

    Article  PubMed  Google Scholar 

  • Karvonen AM et al. (2015) Moisture damage and asthma: a birth cohort study. Pediatrics 135(3):e598–606

    Article  PubMed  Google Scholar 

  • Kembel SW et al. (2012) Architectural design influences the diversity and structure of the built environment microbiome. ISME J 6(8):1469–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirjavainen PV et al. (2015) Microbial secondary metabolites in homes in association with moisture damage and asthma. Indoor Air 26:448–456

    Google Scholar 

  • Korkalainen M et al (2016) Synergistic proinflammatory interactions of microbial toxins and structural components characteristic to moisture-damaged buildings. Indoor Air 27:13–23

    Google Scholar 

  • Krämer U et al. (2015) What can reunification of East and West Germany tell us about the cause of the allergy epidemic? Clin Exp Allergy 45(1):94–107

    Article  PubMed  Google Scholar 

  • Lax S et al. (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Sci (New York, N.Y.) 345(6200):1048–52

    Article  CAS  Google Scholar 

  • Lynch SV et al. (2014) Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol 134(3):593–601. e12

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin CJ, Platt SD, Hunt SM (1987) Housing conditions and ill health. Br Med J (Clin Res Ed.) 294(6580):1125–1127

    Article  CAS  Google Scholar 

  • Meadow JF et al. (2014) Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24(1):41–8

    Article  CAS  PubMed  Google Scholar 

  • Méheust D et al. (2012) Correlation between Environmental Relative Moldiness Index (ERMI) values in French dwellings and other measures of fungal contamination. Sci Total environ 438:319–24

    Article  PubMed  Google Scholar 

  • Mendell MJ et al. (2011) Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect 119(6):748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel O et al. (1996) Severity of asthma is related to endotoxin in house dust. Am J Resp Crit Care Med 154(6 Pt 1):1641–1646

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen A et al. (2005) Of microbes and men. Indoor Air 15(Suppl 9):58–64

    Article  PubMed  Google Scholar 

  • Nevalainen A, Täubel M, Hyvärinen A (2014) Indoor fungi: companions and contaminants. Indoor Air 25:125–126

    Google Scholar 

  • Norbäck D et al. (2011) Lung function decline in relation to mould and dampness in the home: the longitudinal European Community Respiratory Health Survey ECRHS II. Thorax 66(5):396–401

    Article  PubMed  Google Scholar 

  • Norbäck D et al. (2013) Mould and dampness in dwelling places, and onset of asthma: the population-based cohort ECRHS. Occup Environ Med 70(5):325–31

    Article  PubMed  Google Scholar 

  • Pearce N et al. (2007) Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 62(9):758–766

    Article  PubMed  PubMed Central  Google Scholar 

  • Peitzsch M et al. (2012) Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. J Environ Monitor 14(8):2044–2053

    Article  CAS  Google Scholar 

  • Pekkanen J et al. (2007) Moisture damage and childhood asthma: a population-based incident case-control study. Eur Resp J 29(3):509–515

    Article  CAS  Google Scholar 

  • Perzanowski MS et al. (2006) Endotoxin in inner-city homes: associations with wheeze and eczema in early childhood. J Allergy Clin Immunol 117(5):1082–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestka JJ et al. (2008) Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 104(1):4–26

    Article  CAS  PubMed  Google Scholar 

  • Platt SD et al. (1989) Damp housing, mould growth, and symptomatic health state. BMJ 298(6689):1673–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenberg A et al. (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58(5):445–452

    Article  CAS  PubMed  Google Scholar 

  • Reponen T et al. (2011) High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age. Ann Allergy Asthma Immunol 107(2):120–126

    Article  PubMed  Google Scholar 

  • Reponen T et al. (2012) Infant origins of childhood asthma associated with specific molds. J Allergy Clin Immunol130(3):639–644. e5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum PF et al. (2010) Indoor airborne fungi and wheeze in the first year of life among a cohort of infants at risk for asthma. J Exp Sci Environ Epidemiol 20(6):503–15

    Article  Google Scholar 

  • Rosenbaum PF et al. (2015) Environmental relative moldiness index and associations with home characteristics and infant wheeze. J Occup Environ Hyg 12(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Schlink U et al. (2010) Quantile regression of indoor air concentrations of volatile organic compounds (VOC). Sci Total Environ 408(18):3840–3851

    Article  CAS  PubMed  Google Scholar 

  • Schram D et al. (2005) Bacterial and fungal components in house dust of farm children, Rudolf Steiner school children and reference children--the PARSIFAL Study. Allergy 60(5):611–618

    Article  CAS  PubMed  Google Scholar 

  • Schwarz JM, Bilbo SD (2011) LPS elicits a much larger and broader inflammatory response than Escherichia coli infection within the hippocampus of neonatal rats. Neurosci Lett 497(2):110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe RA et al. (2015) Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J Allergy Clin Immunol 135(1):110–22

    Article  PubMed  Google Scholar 

  • Shenassa ED et al. (2007) Dampness and mold in the home and depression: an examination of mold-related illness and perceived control of one’s home as possible depression pathways. Am J Public Health 97(10):1893–1899

    Article  PubMed  PubMed Central  Google Scholar 

  • Sordillo JE et al. (2011) Home characteristics as predictors of bacterial and fungal microbial biomarkers in house dust. Environ Health Perspect 119(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299(6710):1259–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Täubel M et al. (2009) The occupant as a source of house dust bacteria. J Allergy Clin Immunol 124(4):834–40. e47

    Article  PubMed  Google Scholar 

  • Täubel M et al. (2015) Application of the Environmental Relative Moldiness Index in Finland. Appl Environ Microbiol 82(2):578–84

    Article  PubMed  Google Scholar 

  • Thorne PS et al. (2005) Endotoxin exposure is a risk factor for asthma: the national survey of endotoxin in United States housing. Am J Resp Crit Care Med 172(11):1371–1377

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorne PS et al. (2009) Predictors of endotoxin levels in U.S. housing. Environ Health Perspect 117(5):763–771

    Article  CAS  PubMed  Google Scholar 

  • Tischer C et al (2016) Urban dust microbiome: impact on later atopy and wheezing. Environ Health Perspect 124:1919–1923

    Google Scholar 

  • Tischer C, Casas L et al. (2015) Early exposure to bio-contaminants and asthma up to 10 years of age: results of the HITEA study. Eur Resp J 45(2):328–37

    Article  Google Scholar 

  • Tischer C, Chen C-M, Heinrich J (2011) Association between domestic mould and mould components, and asthma and allergy in children: a systematic review. Eur Resp J 38(4):812–824

    Article  CAS  Google Scholar 

  • Tischer C, Gehring U et al. (2011) Respiratory health in children, and indoor exposure to (1,3)-β-D-glucan, EPS mould components and endotoxin. Eur Resp J 37(5):1050–9

    Article  CAS  Google Scholar 

  • Tischer C, Zock J-P et al. (2015) Predictors of microbial agents in dust and respiratory health in the Ecrhs. BMC Pulm Med 15:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Tischer CG et al. (2011) Meta-analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: an ENRIECO initiative. Allergy 66(12):1570–1579

    Article  CAS  PubMed  Google Scholar 

  • Vesper S et al. (2007) Development of an Environmental Relative Moldiness index for US homes. J Occup Environ Med 49(8):829–33

    Article  PubMed  Google Scholar 

  • Vesper SJ et al. (2013) Decreased pulmonary function measured in children exposed to high environmental relative moldiness index homes. Open Resp Med J 7:83–6

    Article  Google Scholar 

  • von Mutius E, Vercelli D (2010) Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 10(12):861–868

    Article  Google Scholar 

  • Waser M et al. (2004) Determinants of endotoxin levels in living environments of farmers’ children and their peers from rural areas. Clin Exp Allergy 34(3):389–397

    Article  CAS  PubMed  Google Scholar 

  • Weikl F et al. (2016) Fungal and Bacterial Communities in Indoor Dust Follow Different Environmental Determinants. PLoS One 11(4):e0154131

    Article  PubMed  PubMed Central  Google Scholar 

  • West CE (2014) Gut microbiota and allergic disease: new findings. Cur Opin Clin Nutr Metab Care 17(3):261–6

    Article  Google Scholar 

  • West CE et al. (2015) The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol 135(1):3–13

    Article  PubMed  Google Scholar 

  • Yirmiya R (1996) Endotoxin produces a depressive-like episode in rats. Brain Res 711(1-2):163–174

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Casas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Casas, L. (2017). Microbial Exposures in Residential Homes. In: Viegas, C., Viegas, S., Gomes, A., Täubel, M., Sabino, R. (eds) Exposure to Microbiological Agents in Indoor and Occupational Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-61688-9_13

Download citation

Publish with us

Policies and ethics