Skip to main content

Halogens in Silicic Magmas and Their Hydrothermal Systems

  • Chapter
  • First Online:
The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

Halogens, mainly F and Cl, play key roles in the evolution and rheology of silicic magmas, magmatic-hydrothermal transition, partitioning of metals into aqueous fluids, and formation of ore deposits. Similarity of ionic radii of O, hydroxyl, and F, and a much greater size of Cl are responsible for (i) higher solubility, hence compatibility of F in silicate melts, (ii) greater lattice energies of fluorides, therefore their more refractory character and lower solubilities in fluids, and (iii) higher hardness of F as ligand for complexing, leading to a distinct spectrum of metal-fluoride versus metal-chloride complexes. In the F-rich systems, the interaction of F with rock-forming aluminosilicates corresponds to progressive fluorination by the thermodynamic component F2O−1. Formation of F-bearing minerals first occurs in peralkaline and silica-undersaturated systems that buffer F concentrations at very low levels (villiaumite, fluorite). The highest concentrations of F are reached in peraluminous silica-saturated systems, where fluorite or topaz are stable. Coordination differences and short-range order effects between [NaAl]–F, Na–F versus Si–O lead to the fluoride-silicate liquid immiscibility, which extends from the silica–cryolite binary to the peralkaline albite–silica–cryolite ternary and to peraluminous topaz-bearing systems, where it may propagate to solidus temperatures in the presence of other components such as Li. Differentiation paths of silicic magmas diverge, depending on the Ca-F proportions. In the Ca-rich systems, the F enrichment is severely limited by fluorite crystallization, whereas the Ca-poor magmas evolve to the high F concentrations and saturate with topaz, cryolite, or immiscible multicomponent fluoride melts (brines). These liquids preferentially partition and decouple high-field strength elements and rare-earth elements (REE), and are responsible for the appearance of non-chondritic element ratios and/or lanthanide tetrad effects. Continuous transition from volatile-rich silicate melts to hydrothermal fluids is unlikely, although two fluids—hydrous halide melts and solute-poor aqueous fluids—may often exsolve simultaneously. The fluoride ligand is responsible for the effective sequestration of hard cations, mainly REE, Th, U, and Zr, into the hydrothermal fluids. In the Cl-dominated systems, the maximum concentrations in silicate melts are significantly lower than those of F due to the absence of bonding between Cl and network-forming cations in the melt structure. The typical Cl-rich phase in felsic magmas is an aqueous ± carbonic fluid phase; the saturation of which limits the attainable concentration of Cl in the silicate melt. The more depolymerized the structure of the silicate melt is, the more easily metal-chloride species are accommodated. Therefore, metaluminous rhyolites are characterized by the highest fluid/melt partition coefficients for Cl as well as the lowest maximum dissolved Cl concentration. Chlorine is dominantly present as NaCl, KCl, CaCl2, FeCl2, and HCl species in aqueous magmatic fluids; their relative proportions are strongly influenced by silicate melt composition, pressure and total dissolved chloride concentration. The activity coefficients of metal-chloride species in the aqueous fluid are strongly dependent on pressure and total chloride concentration, and so is the volatile/melt partition coefficient of Cl. The increase of pressure strongly promotes Cl partitioning into the fluid phase, whereas increased chloride concentrations in the fluid work against it, especially if vapor-brine immiscibility occurs anchoring the activity of major chloride species in the system. Chloride ions are dominant, or at least take the form of significant complex forming ligands for a broad range of economically important elements found in magmatic-hydrothermal ore deposits such as Cu, Au, Mo, Pb, Zn, Sn, and W. Therefore, Cl has significant effect on the volatile/melt and vapor/brine partition coefficients of these elements, and at least partially controls the likelihood of the formation of economic ore mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Rahman AFM, El-Kibbi MM (2001) Anorogenic magmatism: chemical evolution of the Mount El-Sibai A-type complex (Egypt), and implications for the origin of within-plate felsic magmas. Geol Mag 138:67–85

    Article  Google Scholar 

  • Adamczak RL, Mattern JA, Tieckelmann H (1959) A partial phase study of the system NaF–HF. J Phys Chem 63:2063–2065

    Article  Google Scholar 

  • Agangi A, Kamenetsky VS, McPhie J (2012) Evolution and emplacement of high fluorine rhyolites in the Mesoproterozoic Gawler silicic large igneous province, South Australia. Precambr Res 208:124–144

    Article  Google Scholar 

  • Akinfiev NN, Zotov AV (2010) Thermodynamic description of aqueous species in the system Cu–Ag–Au–S–O–H at temperatures of 0–600 °C and pressures of 1–3000 bar. Geochem Int 48:714–720

    Article  Google Scholar 

  • Aksyuk AM, Zhukovskaya TN (1998) The solubility of quartz in aqueous solutions of hydrofluoric acid at temperatures 500–1,000 °C and pressures 100–500 MPa. Dokl Earth Sci 361:745–748

    Google Scholar 

  • Alletti M, Baker DR, Scaillet B, Aiuppa A, Moretti R, Ottolini L (2009) Chlorine partitioning between a basaltic melt and H2O–CO2 fluids at Mount Etna. Chem Geol 263:37–50

    Article  Google Scholar 

  • Anderko A, Pitzer KS (1993a) Equation of state representation of phase equilibria and volumetric properties of the system NaCl–H2O above 573 K. Geochim Cosmochim Acta 57:1657–1680

    Article  Google Scholar 

  • Anderko A, Pitzer KS (1993b) Phase-equilibria and volumetric properties of the systems KCl–H2O and NaCl–KCl–H2O above 573 K—Equation of State representation. Geochim Cosmochim Acta 57:4885–4897

    Article  Google Scholar 

  • Anderson AJ, Clark AH, Gray S (2001) The occurrence and origin of zabuyelite (Li2CO3) in spodumene-hosted fluid inclusions: implications for the internal evolution of rare-element granitic pegmatites. Can Mineral 39:1513–1527

    Article  Google Scholar 

  • Anfilogov VN, Glyuk DS, Trufanova LG (1973) Phase relations in interaction between granite and sodium fluoride at water vapor pressure of 1000 kg/cm2. Geochem Int 10(1):30–33

    Google Scholar 

  • Anfilogov VN, Bragina GI, Bobylev IB, Zyuzeva NA (1979) Structural position of fluorine and chlorine in a silicate melt. Geochem Int 16:17–22

    Google Scholar 

  • Anovitz LM, Hemmingway BS, Westrum EF Jr, Metz GW, Essene EJ (1987) Heat capacity measurements for cryolite (Na3AlF6) and reactions in the system Na–Fe–Al–Si–O–F. Geochim Cosmochim Acta 51:3087–3103

    Google Scholar 

  • Antignano A, Manning CE (2008) Rutile solubility in H2O, H2O–SiO2, and H2O–NaAlSi3O8 fluids at 0.7–2.0 GPa and 700–1000 °C: implications for mobility of nominally insoluble elements. Chem Geol 255:283–293

    Article  Google Scholar 

  • Antipin VS, Savina EA, Mitichkin MA, Perelyaev VI (1999) Rare-metal lithium-fluorine granites, ongonites and topazites of the Southern Baikal region. Petrology 7:147–159

    Google Scholar 

  • Aranovich LY, Newton RC (1996) H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite–periclase equilibrium. Contrib Mineral Petrol 125:200–212

    Article  Google Scholar 

  • Aranovich LY, Newton RC (1997) H2O activity in concentrated KCl and KCl–NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium. Contrib Mineral Petrol 127:261–271

    Article  Google Scholar 

  • Aranovich LY, Zakirov IV, Sretenskaya NG, Gerya TV (2010) Ternary system H2O–CO2–NaCl at high T-P parameters: an empirical mixing model. Geochem Int 48:446–455

    Article  Google Scholar 

  • Aranovich LY, Newton RC, Manning CE (2013) Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions. Earth Planet Sci Lett 374:111–120

    Article  Google Scholar 

  • Aseri AA, Linnen RL, Dong Che X, Thibault Y, Holtz F (2015) Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts. Ore Geol Rev 64:736–746

    Article  Google Scholar 

  • Audétat A (2010) Source and evolution of molybdenum in the porphyry Mo(-Nb) deposit at Cave Peak, Texas. J Petrol 51:1739–1760

    Article  Google Scholar 

  • Audétat A, Pettke T (2003) The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochim Cosmochim Acta 67:97–121

    Article  Google Scholar 

  • Audétat A, Gunther D, Heinrich CA (1998) Formation of a magmatic-hydrothermal ore deposit: insights with LA-ICP-MS analysis of fluid inclusions. Science 279:2091–2094

    Article  Google Scholar 

  • Audétat A, Gunther D, Heinrich CA (2000) Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F-mineralized Mole Granite (Australia). Geochim Cosmochim Acta 64:3373–3393

    Article  Google Scholar 

  • Audétat A, Pettke T, Heinrich CA, Bodnar RJ (2008) The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ Geol 103:877–908

    Article  Google Scholar 

  • Bacon CR, Newman S, Stolper E (1992) H2O, CO2, Cl, and F in melt inclusions in phenocrysts from 3 holocene explosive eruptions, Crater Lake, Oregon. Am Mineral 77:1021–1030

    Google Scholar 

  • Badanina EV, Veksler IV, Thomas R, Syritso LF, Trumbull RB (2004) Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chem Geol 210:113–133

    Article  Google Scholar 

  • Badanina EV, Trumbull RB, Dulski P, Wiedenbeck M, Veksler IV, Syritso LF (2006) The behavior of rare-earth and lithophile trace elements in rare-metal granites: a study of fluorite, melt inclusions, and host rocks from the Khangilay complex, Transbaikalia, Russia. Can Mineral 44:667–692

    Article  Google Scholar 

  • Bai TB, Koster van Groos AF (1999) The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochim Cosmochim Acta 63:1117–1131

    Article  Google Scholar 

  • Bailey JC (1980) Formation of cryolite and other aluminofluorides: a petrological review. Bull Geol Soc Denmark 29:1–45

    Google Scholar 

  • Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth-Sci Rev 114:298–324

    Article  Google Scholar 

  • Baker DR, Conte AM, Freda C, Ottolini L (2002) The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. Contrib Mineral Petrol 142:666–678

    Article  Google Scholar 

  • Balcone-Boissard H, Villemant B, Boudon G, Michel A (2008) Non-volatile vs. volatile behaviours of halogens during the AD 79 Plinian eurption of Mt. Vesuvius, Italy. Earth Planet Sci Lett 269:66–79

    Article  Google Scholar 

  • Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magmas. Geochem Geophys Geosyst 11:Q00905

    Article  Google Scholar 

  • Bali E, Audétat A, Keppler H (2011) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161:597–613

    Article  Google Scholar 

  • Bali E, Keppler H, Audétat A (2012) The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet Sci Lett 351:195–207

    Article  Google Scholar 

  • Barclay J, Carroll MR, Houghton BF, Wilson CJN (1996) Pre-eruptive volatile content and degassing history of an evolving peralkaline volcano. J Volcan Geotherm Res 74:75–87

    Article  Google Scholar 

  • Barnes HL (ed) (1997) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, p 992

    Google Scholar 

  • Barsukov VL, Durasova NA, Kovalenko NI, Ryabchikov ID, Ryzhenko BN (1987) Oxygen fugacity and tin behavior in metals and fluids. Geol Zb 38:723–733

    Google Scholar 

  • Bartels A, Holtz F, Linnen RL (2010) Solubility of manganotantalite and manganocolumbite in pegmatitic melts. Am Mineral 95:537–544

    Article  Google Scholar 

  • Barton MD (1982) The thermodynamic properties of topaz solid solutions and some petrologic applications. Am Mineral 67:956–974

    Google Scholar 

  • Barton MD (1996) Granitic magmatism and metallogeny of southwestern North America. Geol Soc Am Spec Pap 315:261–280

    Google Scholar 

  • Barton MD, Frantz JD (1983) Exchange equilibria of alkali feldspars with fluoride-bearing fluids. Carnegie Inst Wash Yearb 82:377–381

    Google Scholar 

  • Barton MD, Iichik RP, Marikos MA (1991) Metasomatism. Rev Mineral 26:321–349

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Benning LG, Seward TM (1996) Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150–400 °C and 500–1500 bar. Geochim Cosmochim Acta 60:1849–1871

    Article  Google Scholar 

  • Beus AA, Zalashkova NY (1964) Post-magmatic high temperature metasomatic processes in granitic rocks. Int Geol Rev 6:668–681

    Google Scholar 

  • Bhalla P, Holtz F, Linnen RL, Behrens H (2005) Solubility of cassiterite in evolved granitic melts: effect of T, fO2, and additional volatiles. Lithos 80:387–400

    Article  Google Scholar 

  • Birch WD (1984) Quartz-topaz-loellingite rocks near Eldorado, Victoria. Aust J Earth Sci 31:269–278

    Article  Google Scholar 

  • Bodnar RJ, Burnham CW, Sterner SM (1985) Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O–NaCl to 1000 °C and 1500 bars. Geochim Cosmochim Acta 49:1861–1873

    Article  Google Scholar 

  • Bohlen SR, Essene EJ (1978) The significance of metamorphic fluorite in the Adirondacks. Geochim Cosmochim Acta 42:1669–1678

    Article  Google Scholar 

  • Borodin LS (2004) Model system of petrochemical and metallogenic trends of granitoids as a basis for the prognosis of Sn, Li, Ta, Nb, W, Mo, and Cu deposits. Geol Ore Depos 46:3–26

    Google Scholar 

  • Borodulin GP, Chevychelov VY, Zaraisky GP (2009) Experimental study of partitioning of Ta, Nb, Mn, and F between aqueous fluoride fluid and granitic and alkaline melts. Dokl Earth Sci 427:868–873

    Article  Google Scholar 

  • Botcharnikov RE, Behrens H, Holtz F, Koepke J, Sato H (2004) Sulfur and chlorine solubility in Mt. Unzen rhyodacitic melt at 850 °C and 200 MPa. Chem Geol 213:207–225

    Article  Google Scholar 

  • Botcharnikov RE, Holtz F, Behrens H (2007) The effect of CO2 on the solubility of H2O–Cl fluids in andesitic melt. Eur J Mineral 19:671–680

    Article  Google Scholar 

  • Bragina GI, Anfilogov VN (1980) Phase relations and unmixing in the Na2O–Al2O3–SiO2–NaF system. Geochem Int 17:71–75

    Google Scholar 

  • Breiter K, Förster HJ, Seltmann R (1999) Variscan silicic magmatism and related tin–tungsten mineralization in the Erzgebirge-Slavkovský les metallogenic province. Mineral Depos 34:505–521

    Article  Google Scholar 

  • Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts. Part II: IR characteristics of carbonate groups in silicate glasses. Chem Geol 174:241–254

    Article  Google Scholar 

  • Brown ID (1981) The bond-valence method: an empirical approach to chemical structure and bonding. In: O’Keefe M, Navrotsky A (eds) Structure and bonding in crystals, vol II. Acad Press, New York, pp 1–30

    Google Scholar 

  • Brown ID (1988) What factors determine cation coordination numbers? Acta Crystall B44:545–553

    Article  Google Scholar 

  • Brown ID (1992) Chemical and steric constraints in inorganic solids. Acta Crystall B48:553–572

    Article  Google Scholar 

  • Brown ID (2000) The bond valence model as a tool for teaching inorganic chemistry: the ionic model revisited. J Chem Educ 77:1070–1075

    Article  Google Scholar 

  • Brown ID, Skowron A (1990) Electronegativity and Lewis acid strength. J Am Chem Soc 112:3401–3403

    Article  Google Scholar 

  • Buddington AF, Leonard BF (1962) Regional geology of the St. Lawrence County magnetite district, Northwest Adirondacks, New York. US Geol Surv Prof Pap 376:1–145

    Google Scholar 

  • Bukhalova GA, Mal’tsev VT (1965) The K, Na || AlF6. Russ J Inorg Chem 10:100–102

    Google Scholar 

  • Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet Sci Lett 165:187–196

    Article  Google Scholar 

  • Bureau H, Metrich N (2003) An experimental study of bromine behaviour in water-saturated silicic melts. Geochim Cosmochim Acta 67:1689–1697

    Article  Google Scholar 

  • Bureau H, Keppler H, Metrich N (2000) Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet Sci Lett 183:51–60

    Article  Google Scholar 

  • Burt DM (1972) The influence of fluorine on the facies of Ca–Fe–Si skarns. Carnegie Inst Wash Yearb 71:443–449

    Google Scholar 

  • Burt DM (1974) Concepts of acidity and basicity in petrology—the exchange operator approach. Geol Soc Am Abstr Progr 6:674–676

    Google Scholar 

  • Cady GH (1934) Freezing points and vapor pressures of the system potassium fluoride-hydrogen fluoride. J Am Chem Soc 56:1431–1434

    Article  Google Scholar 

  • Candela PA (1990) Theoretical constraints on the chemistry of the magmatic aqueous phase. In: Stein HJ, Hannah JL (eds) Ore-bearing granite systems; petrogenesis and mineralizing processes. Geol Soc Am Spec Pap 246:11–19

    Google Scholar 

  • Candela PA, Holland HD (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim Cosmochim Acta 48:373–380

    Article  Google Scholar 

  • Candela PA, Piccoli PM (1995) Model ore-metal partitioning from melts into vapor and vapor/brine mixtures. In: Thompson JFH (ed) Model ore-metal partitioning from melts into vapor and vapor/brine mixtures in magmas, fluids and ore deposits. Min Assoc Can Short Course 23:101–127

    Google Scholar 

  • Cao X (1989) Solubility of molybdenite and the transport of molybdenum in hydrothermal solutions. Doctoral dissertation, Iowa State University, p 103

    Google Scholar 

  • Carroll M, Holloway JR (eds) (1994) Volatiles in magmas. Rev Mineral 30:517

    Google Scholar 

  • Carroll M, Webster JD (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. Rev Mineral 30:231–279

    Google Scholar 

  • Castro A, Patiño-Douce AE, Corretgé LG, de la Rosa JD, El-Biad M, El-Hmidi H (1999) Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contrib Mineral Petrol 135:255–276

    Article  Google Scholar 

  • Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965

    Article  Google Scholar 

  • Černý P (1991) Rare-element pegmatites: I. Anatomy and internal evolution of pegmatite deposits. Geosci Can 18:49–67

    Google Scholar 

  • Černý P (1992) Geochemical and petrogenetic features of mineralization in rare element granitic pegmatites in the light of current research. Appl Geochem 7:393–416

    Article  Google Scholar 

  • Černý P (1998) Magmatic vs. metamorphic derivation of rare-element granitic pegmatites. Krystalinikum 24:7–36

    Google Scholar 

  • Charoy B, Pollard PJ (1989) Albite-rich, silica-depleted metasomatic rocks at Emuford, northeast Queensland: mineralogical, geochemical, and fluid inclusion contraints on hydrothermal evolution and tin mineralization. Econ Geol 84:1850–1874

    Article  Google Scholar 

  • Charoy B, Raimbault L (1994) Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou (eastern China): the key role of fluorine. J Petrol 35:919–962

    Article  Google Scholar 

  • Chartrand P, Pelton AD (2001) Thermodynamic evaluation and optimization of the Li, Na, K, Mg, Ca//F, Cl reciprocal system using the modified quasi-chemical model. Met Mater Trans 32A:1417–1430

    Article  Google Scholar 

  • Chartrand P, Gemme F, Robelin C (2014) A thermodynamic model for the NH4 +, K+//H2PO4 , H2P2O7 , NO3 , Cl–H2O system. Proc Eng 83C:250–258

    Article  Google Scholar 

  • Che XD, Linnen RL, Wang RC, Aseri A, Thibault Y (2013) Tungsten solubility in evolved granitic melts: an evaluation of magmatic wolframite. Geochim Cosmochim Acta 106:84–98

    Google Scholar 

  • Chevychelov VY, Zaraiskii GP, Borisovskii SE, Borkov DA (2005) Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between a granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites. Petrologiya 13:339–357

    Google Scholar 

  • Chevychelov VY, Botcharnikov RE, Holtz F (2008) Experimental study of fluorine and chlorine contents in mica (biotite) and their partitioning between mica, phonolite melt, and fluid. Geochem Int 46:1081–1089

    Article  Google Scholar 

  • Chou IM (1987) Phase relation in the system NaCl–KCl–H2O. III. Solubilities of halite in vapor-saturated liquids above 445 °C and redetermination of phase equilibrium properties in the system NaCl–H2O to 1000 °C and 1500 bars. Geochim Cosmochim Acta 51:1965–1975

    Article  Google Scholar 

  • Chou IM, Sterner SM, Pitzer KS (1992) Phase relations in the system NaCl–KCl–H2O IV. Differential thermal analysis of the sylvite liquidus in the KCl–H2O binary, the liquidus in the NaCl–KCl–H2O ternary, and the solidus in the NaCl–KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic PTX analysis of solid-liquid equilibria at elevated P-T conditions. Geochim Cosmochim Acta 56:2281–2293

    Article  Google Scholar 

  • Christiansen EH, Bikun JV, Sheridan MF, Burt DM (1984) Geochemical evolution of topaz rhyolites from the Thomas Range and Spor Mountain, Utah. Am Mineral 69:223–236

    Google Scholar 

  • Clarke DB (1992) Granitoid rocks. Chapman & Hall, London, p 283

    Google Scholar 

  • Clarke DB, Wunder B, Förster HJ, Rhede D, Hahn A (2009) Experimental investigation of near-liquidus andalusite-topaz relations in synthetic peraluminous haplogranites at 200 MPa. Mineral Mag 73:997–1007

    Article  Google Scholar 

  • Danckwerth PA (1981) Phase relations in the system Na2O–Al2O3–SiO2–H2O–HF at 15 kbar. Carnegie Inst Wash Yearb 80:350–352

    Google Scholar 

  • De Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51:2639–2652

    Article  Google Scholar 

  • Dergachev VB (1990) Rare-metal ongonites and elvanites and their possible analogues in southwestern England. Russ Geol Geophys 31:69–73

    Google Scholar 

  • Dergachev VB (1992) Classification of rare-metal rocks of the ongonite group. Russ Geol Geophys 33:89–96

    Google Scholar 

  • Devyatykh GG, Pryakhin DA, Bulanov AB, Balabanov VV (1999) Phase diagram of silicon tetrafluoride. Dokl Chem 364:4–5

    Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada. A 6-km vertical reconstruction. Econ Geol 87:1963–2001

    Article  Google Scholar 

  • Dingwell DB (1985) The structure and properties of fluorine-rich silicate melts: implications for granite petrogenesis. In: Taylor RP, Strong DF (eds) Granite-related mineral deposits: geology, petrogenesis and tectonic setting. Canadian Institute of Mining, Metallurgy and Petroleum, Halifax, pp 72–81

    Google Scholar 

  • Dingwell DB, Hess KU, Knoche R (1996) Granite and granitic pegmatite melts: volumes and viscosities. Trans R Soc Edinb Earth Sci 87:65–72

    Article  Google Scholar 

  • Dingwell DB, Holtz F, Behrens H (1997) The solubility of H2O in peralkaline and peraluminous granitic melts. Am Mineral 82:434–437

    Article  Google Scholar 

  • Dolejš D (2004) Thermodynamics and phase equilibria of the silicate-fluoride-H2O systems: implications for fluorine-bearing granites. Ph.D. dissertation, McGill University, Montreal, p 358

    Google Scholar 

  • Dolejš D (2006) Quartz solubility in fluorine-bearing aqueous fluids. Bay Geoinst Ann Rep 2005:84–86

    Google Scholar 

  • Dolejš D (2007) Thermodynamic model of chlorine in silicic melts: a quantitative approach to magmatic devolatilization. Bay Geoinst Ann Rep 2006:112–116

    Google Scholar 

  • Dolejš D (2014) Si-F complexing in aqueous fluids: experimental study and implications for transport of immobile elements. Geophys Res Abstr 16:EGU2014-7221

    Google Scholar 

  • Dolejš D, Baker DR (2004) Thermodynamic analysis of the system Na2O–K2O–CaO–Al2O3–SiO2–H2O–F2O−1: stability of fluorine-bearing minerals in felsic igneous suites. Contrib Mineral Petrol 146:762–778

    Article  Google Scholar 

  • Dolejš D, Baker DR (2005) Thermodynamic modeling of melts in the system Na2O–NaAlO2–SiO2–F2O−1. Geochim Cosmochim Acta 69:5537–5556

    Article  Google Scholar 

  • Dolejš D, Baker DR (2006a) Phase transitions and volumetric properties of cryolite, Na3AlF6: differential thermal analysis to 100 MPa. Am Mineral 91:97–103

    Article  Google Scholar 

  • Dolejš D, Baker DR (2006b) Fluorite solubility in hydrous haplogranitic melts at 100 MPa. Chem Geol 225:40–60

    Article  Google Scholar 

  • Dolejš D, Baker DR (2007a) Liquidus equilibria in the system K2O–Na2O–Al2O3–SiO2–F2O−1–H2O to 100 MPa: I. Silicate-fluoride liquid immiscibility in anhydrous systems. J Petrol 48:785–806

    Article  Google Scholar 

  • Dolejš D, Baker DR (2007b) Liquidus equilibria in the system K2O–Na2O–Al2O3–SiO2–F2O−1–H2O to 100 MPa: II. Differentiation paths of fluorosilicic magmas in hydrous systems. J Petrol 48:807–828

    Article  Google Scholar 

  • Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10:20–40

    Google Scholar 

  • Dolejš D, Štemprok M (2001) Magmatic and hydrothermal evolution of Li-F granites: Cínovec and Krásno intrusions, Krušné hory batholith, Czech Republic. Bull Czech Geol Surv 76:77–99

    Google Scholar 

  • Driesner T (2007) The system H2O-NaCl. Part II: correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 X-NaCl. Geochim Cosmochim Acta 71:4902–4919

    Article  Google Scholar 

  • Driesner T, Heinrich CA (2007) The system H2O-NaCl. Part I: correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 X-NaCl. Geochim Cosmochim Acta 71:4880–4901

    Article  Google Scholar 

  • Du S, Huang Y (1985) Hisanghuagite—a new type of magmatic rocks. Scient Sin B 28:537–546

    Google Scholar 

  • Duc-Tin Q, Audétat A, Keppler H (2007) Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 °C, 140 MPa: a LA-ICP-MS study on synthetic fluid inclusions. Geochim Cosmochim Acta 71:3323–3335

    Article  Google Scholar 

  • Duffy JA (1989) A common optical basicity scale for oxide and fluoride glasses. J Non-Crystal Sol 109:35–39

    Article  Google Scholar 

  • Duffy JA (1993) A review of optical basicity and its applications to oxidic systems. Geochim Cosmochim Acta 57:3961–3970

    Article  Google Scholar 

  • Duffy JA (1996) Optical basicity: a practical acid-base theory for oxides and oxyanions. J Chem Educ 73:1138–1142

    Article  Google Scholar 

  • Duffy JA, Ingram MD (1971) Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J Am Chem Soc 93:6448–6454

    Article  Google Scholar 

  • Dunbar NW, Hervig RL, Kyle PR (1989) Determination of pre-eruptive H2O, F and Cl contents of silicic magmas using melt inclusions—examples from Taupo Volcanic Center, New Zealand. Bull Volcanol 51:177–184

    Article  Google Scholar 

  • Eadington PJ, Nashar B (1978) Evidence for the magmatic origin of quartz-topaz rocks from the New England batholith, Australia. Contrib Mineral Petrol 67:433–438

    Article  Google Scholar 

  • Eugster HP (1986) Minerals in hot water. Am Mineral 71:655–673

    Google Scholar 

  • Eugster HP, Baumgartner L (1987) Mineral solubilities and speciation in supercritical metamorphic fluids. Rev Mineral 17:367–404

    Google Scholar 

  • Farges F (1996) Does Zr–F “complexation” occur in magmas? Chem Geol 127:253–268

    Article  Google Scholar 

  • Farges F, Calas G (1991) Structural analysis of radiation damage in zircon and thorite: an X-ray absorption spectroscopic study. Am Mineral 76:60–73

    Google Scholar 

  • Farges F, Rossano S (2000) Water in Zr-bearing synthetic and natural glasses. Eur J Mineral 12:1093–1107

    Article  Google Scholar 

  • Farges F, Ponader CW, Brown GE Jr (1991) Structural environments of incompatible elements in silicate glass/melt systems: I. Zirconium at trace levels. Geochim Cosmochim Acta 55:1563–1574

    Google Scholar 

  • Farges F, Ponader CW, Calas G, Brown GE Jr (1992) Local environment around incompatible elements in silicate glass/melt systems. II. U(VI), U(V) and U(IV). Geochim Cosmochim Acta 56:4205–4220

    Google Scholar 

  • Farges F, Siewert R, Brown GE Jr, Guesdon A, Morin G (2006a) Structural environments around molybdenum in silicate glasses and melts. I. Influence of composition and oxygen fugacity on the local structure of molybdenum. Can Mineral 44:731–753

    Google Scholar 

  • Farges F, Siewert R, Ponader CW, Brown GE Jr, Pichavant M, Behrens H (2006b) Structural environments around molybdenum in silicate glasses and melts. II. Effect of temperature, pressure, H2O, halogens and sulfur. Can Mineral 44:755–773

    Google Scholar 

  • Farges F, Linnen RL, Gordon EB Jr (2006c) Redox and speciation of tin in hydrous silicate glasses: a comparison with Nb, Ta, Mo and W. Can Mineral 44:795–810

    Google Scholar 

  • Fidelis I, Siekierski S (1966) The regularities in stability constants of some rare earth complexes. J Inorg Nucl Chem 28:185–188

    Article  Google Scholar 

  • Fiege A, Kirchner C, Holtz F, Linnen RL, Dizony W (2011) Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts—an experimental study. Lithos 122:165–174

    Article  Google Scholar 

  • Flood H, Förland T (1947) The acidic and basic properties of oxides. Acta Chem Scand 1:592–604

    Article  Google Scholar 

  • Förster HJ, Tischendorf G (1989) Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: the Hercynian postkinematic granites and associated high-temperature mineralizations of the Erzgebirge (G.D.R.). 1. Communication: calculation procedure and results. Chemie Erde 49:7–20

    Google Scholar 

  • Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Article  Google Scholar 

  • Fournier RO (1985) Silica minerals as indicators of conditions during gold deposition. US Geol Surv Bull 1649:15–26

    Google Scholar 

  • Fournier RO, Potter RW (1982) An equation correlating the solubility of quartz in water from 25o to 900°C at pressures up to 10,000 bars. Geochim Cosmochim Acta 46:1969–1973

    Article  Google Scholar 

  • Franck EU, Spalthoff W (1957) Hydrogen fluoride. I. Specific heat, vapor pressure, and density up to 300o and 300 atmospheres. Zeitschr Elektrochem 61:348–357

    Google Scholar 

  • Frank MR, Candela PA, Piccoli PM, Glascock MD (2002) Gold solubility, speciation, and partitioning as a function of HCl in the brine-silicate melt-metallic gold system at 800 °C and 100 MPa. Geochim Cosmochim Acta 66:3719–3732

    Article  Google Scholar 

  • Frank MR, Candela PA, Piccoli PM (2003) Alkali exchange equilibria between a silicate melt and coexisting magmatic volatile phase: an experimental study at 800 °C and 100 MPa. Geochim Cosmochim Acta 67:1415–1427

    Article  Google Scholar 

  • Frank MR, Simon AC, Pettke T, Candela PA, Piccoli PM (2011) Gold and copper partitioning in magmatic-hydrothermal systems at 800 °C and 100 MPa. Geochim Cosmochim Acta 75:2470–2482

    Article  Google Scholar 

  • Frantz JD, Popp RK, Boctor NZ (1981) Mineral-solution equilibria—V. Solubilities of rock-forming minerals in supercritical fluids. Geochim Cosmochim Acta 45:69–77

    Article  Google Scholar 

  • Frantz JD, Popp RK, Hoering TC (1992) The compositional limits of fluid immiscibility in the system H2O–NaCl–CO2 as determined with the use if synthetic fluid inclusions in conjunction with mass spectrometry. Chem Geol 98:237–255

    Article  Google Scholar 

  • Frindt S, Poutiainen M (2002) P-T path fluid evolution in the Gross Spitzkoppe granite stock, Namibia. Bull Geol Soc Finland 74:103–114

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Gabitov R, Price JD, Watson EB (2005) Solubility of fluorite in haplogranitic melt of variable alkalis and alumina content at 800–1000 °C and 100 MPa. Geochem Geophys Geosys 6:Q03007

    Google Scholar 

  • Gammon JB, Borcsik M, Holland HD (1969) Potassium-sodium ratios in aqueous solutions and coexisting silicate melts. Science 163:179–181

    Article  Google Scholar 

  • Gibert F, Guillaume D, Laporte D (1998a) Importance of fluid immiscibility in the H2O–NaCl–CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900 °C and wetting textures. Eur J Mineral 10:1109–1123

    Article  Google Scholar 

  • Gibert F, Pascal ML, Pichavant M (1998b) Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulphide complex of gold (AuHSo) at 350 to 450 °C and 500 bars. Geochim Cosmochim Acta 62:2931–2947

    Article  Google Scholar 

  • Gioncada A, Orlandi P, Vezzoli L, Omarini RH, Mazzuoli R, Lopez-Azarevich V, Sureda R, Azarevich M, Acocella V, Ruch J (2014) Topaz magmatic crystallization in rhyolites of the Central Andes (Chivinar volcanic complex, NW Argentina): constraints from texture, mineralogy and rock chemistry. Lithos 184–187:62–73

    Article  Google Scholar 

  • Giordano D, Romano C, Dingwell DB, Poe B, Behrens H (2004) The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim Cosmochim Acta 68:5159–5168

    Article  Google Scholar 

  • Glyuk DS, Anfilogov VN (1973a) Phase equilibria in the system granite–H2O–HF at a pressure of 1000 kg/cm2. Geochem Int 10:321–325

    Google Scholar 

  • Glyuk DS, Anfilogov VN (1973b) Phase equilibria in the granite–H2O–KF system at a steam pressure of 1000 kg/cm2. Geochem Int 10:1169–1170

    Google Scholar 

  • Glyuk DS, Shinakin BM (1986) The role of liquid-immiscibility differentiation in the pegmatite process. Geochem Int 23:38–49

    Google Scholar 

  • Goodenough KM, Upton BGJ, Ellam RM (2000) Geochemical evolution of the Ivigtut granite, South Greenland: a fluorine-rich “A-type” intrusion. Lithos 51:205–221

    Article  Google Scholar 

  • Gramenitskiy YN, Shchekina TI (1994) Phase relationships in the liquidus part of a granitic system containing fluorine. Geochem Int 31:52–70

    Google Scholar 

  • Gramenitskiy EN, Shchekina TI (2001) Geochemistry of tantalum, niobium, zirconium, and hafnium in fluorine-enriched granites and alkaline rocks according to experimental data. Geokhim 2001:621–635 (in Russian)

    Google Scholar 

  • Gramenitskiy EN, Shekina TI (2002) Experimental data on geochemistry of REE and Y in the fluorine-bearing granite and nepheline syenite magmas. 9th Int Symp Exper Mineral Petrol Geochem, p 40

    Google Scholar 

  • Gramenitskiy EN, Shchekina TI, Devyatova VN (2005) Phase relations in the fluorine-bearing granite and nepheline syenite systems and the element distribution between phases (experimental research). GEOS, Moscow, p 186 (in Russian)

    Google Scholar 

  • Grjotheim K, Matiašovský K, Fellner P, Silný A (1971) Electrolytic deposition of silicon and of silicon alloys. Part I: physicochemical principles of the Na3AlF6–Al2O3–SiO2 mixtures. Can Metall Q 10:79–82

    Article  Google Scholar 

  • Haapala I (1997) Magmatic and postmagmatic processes in tin-mineralized granites: topaz-bearing leucogranite in the Eurajoki rapakivi stock, Finland. J Petrol 38:1645–1659

    Article  Google Scholar 

  • Hall A (1970) The composition of Cornish quartz-porphyry (“elvan”) dykes. Proc Ussher Soc 2(3):205–208

    Google Scholar 

  • Hall A (1971) Greisenisation in the granite of Cligga Head Cornwall. Proc Geol Assoc 82:209–230

    Article  Google Scholar 

  • Halter WE, Williams-Jones AE, Kontak DJ (1998) Modeling fluid-rock interaction during greisenization at the East Kemptville tin deposit: implications for mineralization. Chem Geol 150:1–17

    Article  Google Scholar 

  • Hanley JJ, Pettke T, Mungall JE, Spooner ETC (2005) The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800 °C: a laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochim Cosmochim Acta 69:2593–2611

    Article  Google Scholar 

  • Harms E, Schmincke HU (2000) Volatile composition of the phonolitic Laacher See magma (12,900 yr BP): implications for syn-eruptive degassing of S, F, Cl and H2O. Contrib Mineral Petrol 138:84–98

    Article  Google Scholar 

  • Haselton HT Jr, Cygan GL, D’Angelo WM (1988) Chemistry of aqueous solutions coexisting with fluoride buffers in the system K2O–Al2O3–SiO2–H2O–F2O−1 (1 kbar, 400o–700°C). Econ Geol 83:163–173

    Google Scholar 

  • Hawthorne FC (1985) Towards a structural classification of minerals: the VIMIVT2Φn minerals. Am Mineral 70:455–473

    Google Scholar 

  • Hawthorne FC (1992) The role of OH and H2O in oxide and oxysalt minerals. Z Kristall 201:183–206

    Google Scholar 

  • Hayden LA, Manning CE (2011) Rutile solubility in supercritical NaAlSi3O8–H2O fluids. Chem Geol 284:74–81

    Article  Google Scholar 

  • Heinrich CA (1990) The chemistry of tin (-tungsten) ore deposition. Econ Geol 85:529–550

    Article  Google Scholar 

  • Heinrich CA (1995) Geochemical evolution and hydrothermal mineral deposition in (Sn-W-base metal) and other granite-related ore systems: some conclusions from Australian examples. In Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineral Assoc Canada Short Course 23:203–219

    Google Scholar 

  • Heinrich CA (2005) The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Miner Depos 39:864–889

    Article  Google Scholar 

  • Heinrich CA, Candela PA (2014) Fluids and ore formation in the Earth’s crust. In Scott SD (ed) Treatise on geochemistry. Geochemistry of mineral deposits, vol 13, 2nd edn. Elsevier, Amsterdam, p 1–28

    Google Scholar 

  • Heinrich CA, Gunther D, Audétat A, Ulrich T, Frischknecht R (1999) Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27:755–758

    Article  Google Scholar 

  • Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kb. Am J Sci 281:1249–1516

    Article  Google Scholar 

  • Hemley RJ, Prewitt CT, Kingma KJ (1994) High-pressure behavior of silica. Rev Mineral 29:41–81

    Google Scholar 

  • Henley RW (1973) Solubility of gold in hydrothermal chloride solutions. Chem Geol 11:73–87

    Article  Google Scholar 

  • Henley S (1974) Geochemistry and petrogenesis of elvan dykes in the Perranporth area, Cornwall. Proc Ussher Soc 3:136–145

    Google Scholar 

  • Hervig RL, Kortemeier WT, Burt DM (1987) Ion-microprobe analyses of Li and B in topaz from different environments. Am Mineral 72:392–396

    Google Scholar 

  • Heyrman M, Chartrand P (2007) A thermodynamic model for the NaF–KF–AlF3–NaCl–KCl–AlCl3 system. TMS Light Metals 2007:519–524

    Google Scholar 

  • Hogan JP, Gilbert MC (1995) The A-type Mount Scott granite sheet: importance of crustal magma traps. J Geophys Res 100:15779–15792

    Article  Google Scholar 

  • Holland HD (1972) Granites, solutions, and base metal deposits. Econ Geol 67:281–301

    Article  Google Scholar 

  • Holland T, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42:673–683

    Article  Google Scholar 

  • Holtz F, Johannes W, Pichavant M (1992) Effect of excess aluminium on phase relations in the system Qz–Ab–Or: experimental investigation at 2 kbar and reduced H2O-activity. Eur J Mineral 4:137–152

    Article  Google Scholar 

  • Holtz F, Dingwell DB, Behrens H (1993) Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contrib Mineral Petrol 113:492–501

    Article  Google Scholar 

  • Holzheid A, Grove TL (2002) Sulfide saturation limits in silicate melts and their implications to core formation scenarios for terrestrial planets. Am Mineral 87:227–237

    Article  Google Scholar 

  • Horbe MA, Horbe AC, Costi HT, Teixeira JT (1991) Geochemical characteristics of cryolite-tin-bearing granites from the Pitinga Mine, northwestern Brazil—a review. J Geochem Explor 40:227–249

    Article  Google Scholar 

  • Horn S, Schmincke HU (2000) Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull Volcanol 61:537–555

    Article  Google Scholar 

  • Hu X, Bi X, Hu R, Shang L, Fan W (2008) Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid. Geochem J 42:141–150

    Article  Google Scholar 

  • Icenhower J, London D (1995) An experimental study of element partitioning among biotite, muscovie, and coexisting peraluminous silicic melt at 200 MPa H2O. Am Mineral 80:1229–1251

    Article  Google Scholar 

  • Icenhower JP, London D (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O. Contrib Mineral Petrol 127:17–29

    Article  Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Article  Google Scholar 

  • Jackson KJ, Helgeson HC (1985) Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: II. Interpretation of phase relations in the Southeast Asian tin belt. Econ Geol 80:1365–1378

    Article  Google Scholar 

  • Jahn S, Dubrail J, Wilke M (2015) Complexation of Zr and Hf monomers in supercritical aqueous solutions: insights from ab initio molecular dynamics simulations. Chem Geol 418:30–39

    Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin, p 335

    Book  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comp Geosci 18:899–947

    Article  Google Scholar 

  • Johnston C, Chappell BW (1992) Topaz-bearing rocks from Mount Gibson, North Queensland, Australia. Am Mineral 77:303–313

    Google Scholar 

  • Joyce DB, Holloway JR (1993) An experimental determination of the thermodynamic properties of H2O–CO2–NaCl fluids at high pressures and temperatures. Geochim Cosmochim Acta 57:733–746

    Article  Google Scholar 

  • Joyce DB, Voigt DE (1994) A phase equilibrium study in the system KAlSi3O8–NaAlSi3O8–SiO2–Al2SiO5–H2O and petrogenetic implications. Am Mineral 79:504–512

    Google Scholar 

  • Kamenetsky VS, Naumov VB, Davidson P, van Achterbergh E, Ryan CG (2004) Immiscibility between silicate magmas and aqueous fluids: a melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite (NE Russia). Chem Geol 210:73–90

    Article  Google Scholar 

  • Kendrick MA, Arculus RJ, Danyushevsky LV, Kamenetsky VS, Woodhead JD, Honda M (2014) Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet Sci Lett 400:165–176

    Article  Google Scholar 

  • Keppler H (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contrib Mineral Petrol 114:479–488

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Kilinc IA, Burnham CW (1972) Partitioning of chloride between a silicate melt and a coexisting aqueous phase from 2 to 8 kilobars. Econ Geol 67:231–235

    Article  Google Scholar 

  • Kleeman JD (1985) Origin of disseminated woltramite-bearing quartz-topaz rock at Torrington, New South Wales, Australia. High-heat production (HHP) granites, hydrothermal circulation and ore genesis. Institute of Mining and Metallurgy, London, pp 197–201

    Google Scholar 

  • Klemm W (1994) Chemical evolution of hydrothermal solutions during Variscan and post-Variscan mineralization in the Erzgebirge, Germany. In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collisional orogens. Czech Geological Survey, Prague, pp 150–158

    Google Scholar 

  • Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu–Mo ore deposition from low-salinity magmatic fluids. Econ Geol 102:1021–1045

    Article  Google Scholar 

  • Klemme S (2004) Evidence for fluoride melts in Earth’s mantle formed by liquid immiscibility. Geology 32:441–444

    Article  Google Scholar 

  • Kogarko LN, Krigman LD (1975) Immiscibility in fluorosilicate systems. Phys Chem Glasses 1:61–65

    Google Scholar 

  • Kogarko LN, Krigman LD (1981) Fluorine in silicate melts and magmas. Nauka, Moscow, p 126 (in Russian)

    Google Scholar 

  • Kogarko LN, Krigman LD, Sharudilo NS (1968) Experimental investigations of the effect of alkalinity of silicate melts on the separation of fluorine into the gas phase. Geochem Int 5:782–790

    Google Scholar 

  • Kohn SC, Dupree R, Mortuza MG, Henderson CMB (1991) NMR evidence for five- and six-coordinated aluminum fluoride complexes in F-bearing aluminosilicate glasses. Am Mineral 76:309–312

    Google Scholar 

  • Kojima H, Whiteway SG, Masson CR (1968) Melting points of inorganic fluorides. Can J Chem 46:2968–2971

    Article  Google Scholar 

  • Kortemeier WT, Burt DM (1988) Ongonite and topazite dikes in the Flying W ranch area, Tonto basin, Arizona. Am Mineral 73:507–523

    Google Scholar 

  • Korzhinskiy DS (1959) Acid-base interaction of the components in silicate melts and the direction of cotectic lines. Dokl Akad Nauk SSSR, Earth Sci Sect 128:821–823

    Google Scholar 

  • Korzhinskiy DS (1960) Acidity-alkalinity in magmatic processes. 21st international geological congress, Report of the 21st session, Copenhagen, pp 160–170

    Google Scholar 

  • Kosinski JJ, Anderko A (2001) Equation of state for high-temperature aqueous electrolyte and noneletrolyte systems. Fluid Phase Equilib 183–184:75–86

    Article  Google Scholar 

  • Koster van Groos AF (1991) Differential thermal analysis of the liquidus relations in the system NaCl–H2O to 6 kbar. Geochim Cosmochim Acta 55:2811–2817

    Article  Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1968) Melting relationships in the system NaAlSi3O8–NaF–H2O to 4 kilobars pressure. J Geol 76:50–70

    Article  Google Scholar 

  • Koster van Groos AF, Wyllie PJ (1969) Melting relationships in the system NaAlSi3O8–NaCl–H2O at 1 kilobar pressure, with petrological applications. J Geol 77:581–605

    Article  Google Scholar 

  • Kostitsyn YuA (2000) Sources of rare metals in peraluminous granites: a review of geochemical and isotopic data. Geochem Int 39:S43–S59

    Google Scholar 

  • Kotelnikova ZA, Kotelnikov AR (2002) Synthetic NaF-bearing fluid inclusions. Geochem Int 40:594–600

    Google Scholar 

  • Kotov NV, Domnina MI, Vorob’yev PV, Kovnurko GM, Galibin VA (1981) Experimental determination of the composition of the albitizing solution during hydrothermal transformation of granite in the presence of NaF. Geochem Int 18:47–54

    Google Scholar 

  • Kovalenko VI, Kovalenko NI (1976) Ongonites: subvolcanic analogues of rare-metal Li–F granites. Nauka, Moscow, p 127 (in Russian)

    Google Scholar 

  • Kovalenko VI, Kovalenko NI (1984) Problems of the origin, ore-bearing and evolution of rare-metal granitoids. Phys Earth Planet Inter 35:51–62

    Google Scholar 

  • Kovalenko NI, Kovalenko VI, Belykh LA (1975) Experimental study of the fusion and crystallization of topaz-bearing quartz keratophyre (ongonite) in the presence of water and hydrofluoric acid. Dokl Akad Nauk SSSR 215:129–132

    Google Scholar 

  • Kovalenko VI, Antipin VS, Konusova VV, Smirnova YV, Petrov LL, Vladykin NV, Kunzetsova AI, Kostyukova YS, Pisarskaya VA (1977) Partition coefficients of fluorine, niobium, tantalum, lanthanum, ytterbium, yttrium, tin and tungsten in ongonite. Dokl Akad Nauk SSSR 233:203–205

    Google Scholar 

  • Kovalenko VI, Tsaryeva GM, Goreglyad AV, Yarmolyuk VV, Troitsky VA, Hervig RL, Farmer GL (1995) The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Econ Geol 90:530–547

    Article  Google Scholar 

  • Kravchuk IF, Keppler H (1994) Distribution of chloride between aqueous fluids and felsic melts at 2 kbar and 800 °C. Eur J Mineral 6:913–923

    Article  Google Scholar 

  • Kravchuk IF, Slutskii AB (2001) Fluorine behavior in fluid-magmatic systems. Geochem Int 39:609–614

    Google Scholar 

  • Kravchuk IF, Kotelnikov AR, Senin VG (2004) Partitioning of volatile (Cl, F, and S) and rare alkali (Rb and Cs) elements in the system aluminosilicate melt-fluid. Geokhimiya 2004:1213–1219

    Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  • Kushiro I (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene and silica minerals. Am J Sci 275:411–431

    Article  Google Scholar 

  • Kuvakin MA, Kusakin PS (1959) The sodium-fluoride-aluminum fluoride-sodium chloride system. Russ J Inorg Chem 4:1188–1190

    Google Scholar 

  • Lagache M, Weisbrod A (1977) The system two alkali feldspars–KCl–NaCl–H2O at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62:77–101

    Article  Google Scholar 

  • Lambotte G, Chartrand P (2013a) Thermodynamic modeling of the (Al2O3 + Na2O), (Al2O3 + Na2O + SiO2), and (Al2O3 + Na2O + AlF3 + NaF) systems. J Chem Thermodyn 57:306–334

    Article  Google Scholar 

  • Lambotte G, Chartrand P (2013b) A thermodynamic approach to the corrosion of the cathode refractory lining in aluminium electrolysis cells: modelling of the Al2O3–Na2O–SiO2–AlF3–NaF–SiF4 system. TMS Light Met 2013:911–916

    Google Scholar 

  • Lecumberri-Sanchez P, Steele-MacInnis M, Bodnar RJ (2015) Synthetic fluid inclusions XIX. Experimental determination of the vapor-saturated liquidus of the system H2O–NaCl–FeCl2. Geochim Cosmochim Acta 148:34–49

    Article  Google Scholar 

  • Lentz DR, Gregoire C (1995) Petrology and mass-balance constraints on major-, trace-, and rare-earth-element mobility in porphyry-greisen alteration associated with the epizonal True Hill granite, southwestern New Brunswick, Canada. J Geochem Expl 52:303–331

    Article  Google Scholar 

  • Lerchbaumer L, Audétat A (2012) High Cu concentrations in vapor-type fluid inclusions: an artifact? Geochim Cosmochim Acta 88:255–274

    Article  Google Scholar 

  • Lester GW, Clark AH, Kyser TK, Naslund HR (2013) Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for natural magmas. Contrib Mineral Petrol 166:329–349

    Article  Google Scholar 

  • Lewis GN (1923) Valence and the structure of atoms and molecules. Chem Catal Comp, New York, p 172

    Google Scholar 

  • Lewis GN (1938) Acids and bases. J Franklin Inst 226:293–313

    Article  Google Scholar 

  • Li Y, Audétat A, Lerchbaumer L, Xiong XL (2009) Rapid Na, Cu exchange between synthetic fluid inclusions and external aqueous solutions: evidence from LA-ICP-MS analysis. Geofluids 9:321–329

    Article  Google Scholar 

  • Liebscher A, Heinrich CA (2007) Fluid-fluid interactions in the Earth’s lithosphere. Rev Mineral Geochem 65:1–13

    Article  Google Scholar 

  • Linnen RL (1998) The solubility of Nb–Ta–Zr–Hf–W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites. Econ Geol 93:1013–1025

    Article  Google Scholar 

  • Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta–Nb–W–Sn–Zr–Hf mineralization. Geol Assoc Can Short Course Notes 17:45–68

    Google Scholar 

  • Linnen RL, Keppler H (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib Mineral Petrol 128:213–227

    Article  Google Scholar 

  • Linnen RL, Pichavant M, Holtz F, Burgess S (1995) The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850 °C and 2 kbar. Geochim Cosmochim Acta 59:1579–1588

    Article  Google Scholar 

  • Linnen RL, Van Lichtervelde M, Černý P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280

    Article  Google Scholar 

  • Linnen RL, Samson IM, Williams-Jones AE, Chakhmouradian AR (2014) Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits. In Scott SD (ed) Treatise on geochemistry. Geochemistry of mineral deposits, vol 13, 2nd edn. Elsevier, Amsterdam, pp 543–568

    Google Scholar 

  • Liu CS, Ling HF, Xiong XL, Shen WZ, Wang DZ, Huang XL, Wang RC (1999) An F-rich, Sn-bearing volcanic-intrusive complex in Yanbei, South China. Econ Geol 94:325–342

    Article  Google Scholar 

  • London D (1986) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. Am Mineral 71:376–395

    Google Scholar 

  • London D (1997) Estimating abundances of volatile and other mobile components on evolved silicic melts through mineral-melt equilibria. J Petrol 38:1691–1706

    Article  Google Scholar 

  • London D, Manning DAC (1995) Chemical variation and significance of tourmaline from southwest England. Econ Geol 90:495–519

    Article  Google Scholar 

  • London D, Hervig RL, Morgan VIGB (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib Mineral Petrol 99:360–373

    Article  Google Scholar 

  • London D, Morgan GBVI, Babb HA, Loomis JL (1993) Behavior and effects of phosphorus in the system Na2O–K2O–Al2O3–SiO2–P2O5–H2O at 200 MPa (H2O). Contrib Mineral Petrol 113:450–465

    Article  Google Scholar 

  • London D, Morgan GBVI, Wolf MB (2001) Amblygonite-montebrasite solid solutions as monitors of fluorine in evolved granitic and pegmatitic melts. Am Mineral 86:225–233

    Article  Google Scholar 

  • Louvel M, Sanchez-Valle C, Malfait W, Cardon H, Testemale D, Hazemann JL (2014) Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in site fluid-melt partitioning experiments. Am Mineral 99:1616–1625

    Article  Google Scholar 

  • Lowenstern JB (1994) Chlorine, fluid immiscibility, and degassing in peralkaline magmas from Pantelleria, Italy. Am Mineral 79:353–369

    Google Scholar 

  • Lowenstern JB, Bleick H, Vazquez JA, Castro JM, Larson PB (2012) Degassing of Cl, F, Li, and Be during extrusion and crystallization of the rhyolite dome at Volcan Chaiten, Chile during 2008 and 2009. Bull Volcanol 74:2303–2319

    Article  Google Scholar 

  • Lukkari S, Holtz F (2007) Phase relations of a F-enriched peraluminous granite: an experimental study of the Kymi topaz granite stock, southern Finland. Contrib Mineral Petrol 153:273–288

    Article  Google Scholar 

  • Luth WC, Tuttle OF (1969) The hydrous vapor phase in equilibrium with granite and granite magmas. Geol Soc Am Memoir 115:513–548

    Article  Google Scholar 

  • Maar RA, Baker DR, Williams-Jones AE (1998) Chemical controls on the solubility of Zr-bearing phases in simplified peralkaline melts and application to the Strange Lake intrusion, Quebec–Labrador. Can Mineral 36:1001–1008

    Google Scholar 

  • Macdonald R, Smith RL, Thomas JE (1992) Chemistry of the subalkalic silicic obsidians. US Geol Surv Prof Paper 1523, p 224

    Google Scholar 

  • Malinin SD, Kurovskaya NA (1996) The effect of pressure on mineral solubility in aqueous chloride solutions under supercritical conditions. Geokhimiya 1:51–58 (in Russian)

    Google Scholar 

  • Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol 76:206–215

    Article  Google Scholar 

  • Manning CE (1994) The solubility of quartz in H2O in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839

    Article  Google Scholar 

  • Manning DAC, Henderson P (1984) The behavior of tungsten in granitic melt-vapor systems. Contrib Mineral Petrol 86:286–293

    Article  Google Scholar 

  • Manning DAC, Hill PI (1990) The petrogenesis and metallogenetic significance of topaz granite from the southwest England ore field. Geol Soc Am Spec Paper 246:51–69

    Google Scholar 

  • Manning DAC, Hamilton DL, Henderson CMB, Dempsey MJ (1980) The probable occurrence of interstitial Al in hydrous, F-bearing and F-free aluminosilicate melts. Contrib Mineral Petrol 75:257–262

    Article  Google Scholar 

  • Marianelli P, Metrich N, Sbrana A (1999) Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bull Volcanol 61:48–63

    Article  Google Scholar 

  • Marshall WL, Franck EU (1981) Ion product of water substance, 0–1000°C, 1–10,000 bars, new international formulation and its background. J Phys Chem Ref Data 10:295–304

    Article  Google Scholar 

  • Marshall AS, Hinton RW, Macdonald R (1998) Phenocrystic fluorite in peralkaline rhyolites, Olkaria, Kenya Rift Valley. Mineral Mag 62:477–486

    Article  Google Scholar 

  • Matthews SJ, Sparks RSJ, Gardeweg MC (1999) The Piedras Grandes-Soncor eruptions, Lascar Volcano, Chile; Evolution of zoned magma chamber in the central Andean upper crust. J Petrol 40:1891–1919

    Article  Google Scholar 

  • Mayanovic RA, Yan H, Anderson AJ, Solferino G (2013) Investigation of the structural environment of Ta in a silicate glass and water system under high P-T conditions. J Non-Cryst Solids 368:71–78

    Article  Google Scholar 

  • Mei Y, Liu W, Sherman DM, Brugger J (2014) Metal complexation and ion hydration in low density hydrothermal fluids: Ab initio molecular dynamics simulation of Cu(I) and Au(I) in chloride solutions (25–1000 °C, 1–5000 bar). Geochim Cosmochim Acta 131:196–212

    Article  Google Scholar 

  • Metrich N, Rutherford MJ (1992) Experimental study of chlorine behavior in hydrous silicic melts. Geochim Cosmochim Acta 56:607–616

    Article  Google Scholar 

  • Michaud V, Clocchiatti R, Sbrana S (2000) The Minoan and post-Minoan eruptions, Santorini (Greece), in the light of melt inclusions: chlorine and sulphur behaviour. J Volcanol Geotherm Res 99:195–214

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineral Deposita 49:987–997

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim Cosmochim Acta 73:7087–7109

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE, van Hinsberg V, Salvi S (2011) An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature. Geochim Cosmochim Acta 75:7426–7434

    Article  Google Scholar 

  • Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196

    Article  Google Scholar 

  • Mootz D, Ohms U, Poll W (1981) Schmelzdiagramm H2O–HF und Strukturen der 1:1- und einer 1:2-Phase. Z Anorg Allg Chem 479:75–83

    Article  Google Scholar 

  • Morey GW, Chen WT (1956) Pressure-temperature curves in systems containing water and a salt. J Am Chem Soc 78:4249–4252

    Article  Google Scholar 

  • Muñoz JL (1971) Hydrothermal stability relations of synthetic lepidolite. Am Mineral 56:2069–2078

    Google Scholar 

  • Muñoz JL, Ludington DS (1974) Fluorine-hydroxyl exchange in biotite. Am J Sci 274:396–413

    Article  Google Scholar 

  • Mustart DA (1972) Phase relations in the peralkaline portion of the system Na2O–Al2O3–SiO2–H2O. Ph.D. dissertation, Stanford University, p 202

    Google Scholar 

  • Mysen BO, Virgo D (1985a) Interaction between fluorine and silica in quenched melts on the joins SiO2–AlF3 and SiO2–NaF determined by Raman spectroscopy. Phys Chem Mineral 12:77–85

    Article  Google Scholar 

  • Mysen BO, Virgo D (1985b) Structure and properties of fluorine-bearing aluminosilicate melts: the system Na2O–Al2O3–SiO2–F at 1 atm. Contrib Mineral Petrol 91:205–220

    Article  Google Scholar 

  • Mysen BO, Cody GD, Smith A (2004) Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochim Cosmochim Acta 68:2745–2769

    Article  Google Scholar 

  • Nagaseki H, Hayashi KI (2008) Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology 36:27–30

    Article  Google Scholar 

  • Navrotsky A (1994) Physics and chemistry of earth materials. Cambridge University Press, Cambridge, p 417

    Book  Google Scholar 

  • Nekrasov IY, Epel’baum MB, Sobolev VP (1980) Partition of tin between melt and chloride fluid in the granite–SnO–SnO2–fluid system. Dokl Earth Sci Sect 252:165–168

    Google Scholar 

  • Nichols GT, Wiebe R (1998) Desilication veins in the Cadillac Mountain granite (Maine, USA): a record of reversals in the SiO2 solubility of H2O-rich vapour released during subsolidus cooling. J Metamorph Geol 16:795–808

    Article  Google Scholar 

  • Norman MD, Leeman WP, Mertzman SA (1992) Granites and rhyolites from the northwestern USA: temporal variation in magmatic processes and relations to tectonic setting. Trans R Soc Edin Earth Sci 83:71–81

    Article  Google Scholar 

  • O’Neill HSC, Mavrogenes JA (2002) The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. J Petrol 43:1049–1087

    Google Scholar 

  • Paillat O, Elphick SC, Brown WL (1992) The solubility of water in NaAlSi3O8 melts: a re-examination of Ab-H2O phase relationships and critical behavior at high pressures. Contrib Mineral Petrol 112:490–500

    Article  Google Scholar 

  • Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  Google Scholar 

  • Pauly H (1960) Paragenetic relations in the main cryolite ore of Ivigtut, South Greenland. Neu Jahrb Mineral Abh 94:121–139

    Google Scholar 

  • Pauly H (1974) Ivigtut cryolite deposit, SW-Greenland. In Štemprok M (ed) Metallization associated with acid magmatism, vol 1. Czech Geological Survey, Prague, pp 393–399

    Google Scholar 

  • Pauly H, Bailey JC (1999) Genesis and evolution of the Ivigtut cryolite deposit, SW Greenland. Meddelelser om Grønland, Geosci 37:60

    Google Scholar 

  • Pearson RG (1968a) Hard and soft acids and bases. HSAB, Part I. Fundamental principles. J Chem Educ 45:581–587

    Google Scholar 

  • Pearson RG (1968b) Hard and soft acids and bases. HSAB, Part II. Underlying theories. J Chem Educ 45:643–648

    Article  Google Scholar 

  • Pelton AD (1999) Thermodynamic calculations of chemical solubilities of gases in oxide melts and glasses. Glass Sci Tech 72:214–226

    Google Scholar 

  • Pelton AD, Wu P (1999) Thermodynamic modeling in glass-forming melts. J Non-Crystal Solids 253:178–191

    Article  Google Scholar 

  • Pelton AD, Eriksson G, Romero-Serrano A (1993) Calculation of sulfide capacities in multicomponent slags. Metall Trans 24B:817–825

    Article  Google Scholar 

  • Peppard DF, Mason GW, Lewey S (1969) A tetrad effect in liquid-liquid extraction ordering of lanthanides(III). J Inorg Nucl Chem 31:2271–2272

    Article  Google Scholar 

  • Peretyazhko IS, Savina EA (2010) Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immiscibility in magmatic systems. Petrology 18:514–543

    Article  Google Scholar 

  • Peretyazhko IS, Vye Zagorsky, Tsareva EA, Sapozhnikov AN (2007) Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary-Bulak Intrusion, Eastern Transbaikal Region. Dokl Earth Sci 413:315–320

    Article  Google Scholar 

  • Peterson JW, Chako T, Kuehner SM (1991) The effects of fluorine on the vapor-absent melting of phlogopite + quartz: implications for deep-crustal processes. Am Mineral 76:470–476

    Google Scholar 

  • Phillips NWF, Singleton RH, Hollingshead EA (1955) Liquidus curves for aluminum cell electrolyte. II. Ternary systems of cryolite-alumina with sodium fluoride, sodium chloride, and aluminum fluoride. J Electrochem Soc 102:688–690

    Google Scholar 

  • Piccoli PM, Candela PA (2002) Apatite in igneous systems. Rev Mineral 48:255–292

    Google Scholar 

  • Pichavant M, Valencia Herrera J, Boulmier S, Briqueu L, Joron JL, Juteau M, Marin L, Michard A, Sheppard SMF, Treuil M, Vernet M (1987) The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In Mysen BO (ed) Magmatic processes: physicochemical principles. Geochem Soc Spec Publ 1:359–373

    Google Scholar 

  • Pichavant M, Kontak DJ, Valencia Herrera J, Clark AH (1988a) The Miocene-Pliocene Macusani volcanics, SE Peru. I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib Mineral Petrol 100:300–324

    Article  Google Scholar 

  • Pichavant M, Kontak DJ, Briqueu L, Valencia Herrera J, Clark AH (1988b) The Miocene-Pliocene Macusani volcanics, SE Peru. II. Geochemistry and origin a felsic peraluminous magma. Contrib Mineral Petrol 100:325–338

    Article  Google Scholar 

  • Piilonen PC, Farges F, Linnen RL, Brown GE Jr (2005) Tin and niobium in dry and fluid-rich (H2O, F) silicate glasses. Phys Scr T115:405–407

    Google Scholar 

  • Piilonen PC, Farges F, Linnen RL, Brown GE Jr, Pawlak M, Pratt A (2006) Structural environment of Nb5+ in dry and fluid-rich (H2O,F) silicate glasses: a combined XANES and EXAFS study. Can Mineral 44:775–794

    Google Scholar 

  • Pokrovski GS, Roux J, Hazemann JL, Testemale D (2005) An X-ray absorption spectroscopy study of argutite solubility and aqueous Ge(IV) speciation in hydrothennal fluids to 500 °C and 400 bar. Chem Geol 217:127–145

    Article  Google Scholar 

  • Pokrovski GS, Borisova AY, Harrichoury J-C (2008) The effect of sulfur on vapor-liquid fractionation of metals in hydrothermal systems. Earth Planet Sci Lett 266:345–362

    Article  Google Scholar 

  • Pokrovski GS, Tagirov BR, Schott J, Bazarkina EF, Hazermann JL, Proux O (2009a) An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids. Chem Geol 259:17–29

    Article  Google Scholar 

  • Pokrovski GS, Tagirov BR, Schott J, Hazemann JL, Proux O (2009b) A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling. Geochim Cosmochim Acta 73:5406–5427

    Article  Google Scholar 

  • Pollard PJ (1983) Magmatic and postmagmatic processes in the formation of rocks associated with rare-element deposits. Trans Inst Min Metall B Appl Earth Sci 92:B1–B9

    Google Scholar 

  • Pollard PJ (1989) Geologic characteristics and genetic problems associated with the development of granite-hosted deposits of tantalum and niobium. In: Möller P, Černý P, Saupé F (eds) Lanthanides, tantalum and niobium. Mineralogy, geochemistry, characteristics of primary ore deposits, prospecting, processing and applications. Springer, Berlin, pp 240–256

    Google Scholar 

  • Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Mineral Depos 22:315–321

    Article  Google Scholar 

  • Pollard PJ, Nakapadungrat S, Taylor RG (1995) The Phuket supersuite, southwest Thailand: fractionated I-type granites associated with tin-tantalum mineralization. Econ Geol 90:586–602

    Article  Google Scholar 

  • Powell R, Holland T, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metamorph Geol 16:577–588

    Article  Google Scholar 

  • Price JD, Hogan JP, Gilbert MC, London D, Morgan GBVI (1999) Experimental study of titanite-fluorite equilibria in the A-type Mount Scott granite: implications for assessing F contents of felsic magma. Geology 27:951–954

    Article  Google Scholar 

  • Puziewicz J, Johannes W (1988) Phase equilibria and compositions of Fe–Mg–Al minerals and melts in water-saturated peraluminous granitic systems. Contrib Mineral Petrol 100:156–168

    Article  Google Scholar 

  • Raimbault L, Burnol L (1998) The Richemont rhyolite dike, Massif Central, France: a subvolcanic equivalent of rare-metal granites. Can Mineral 36:265–282

    Google Scholar 

  • Ravich MI, Valyashko VM (1965) Solubility of sodium fluoride at elevated temperatures. Russ J Inorg Chem 10:107–109

    Google Scholar 

  • Reddy RG, Blander M (1987) Modeling of sulfide capacities of silicate melts. Metal Trans 18B:591–596

    Article  Google Scholar 

  • Rempel KU, Williams-Jones AE, Migdisov AA (2008) The solubility of molybdenum dioxide and trioxide in HCl-bearing water vapour at 350 °C and pressures up to 160 bars. Geochim Cosmochim Acta 72:3074–3083

    Article  Google Scholar 

  • Renaud E, Robelin C, Heyrman M, Chartrand P (2009) Thermodynamic evaluation and optimization of the (LiF + NaF + KF + MgF2 + CaF2 + SrF2) system. J Chem Thermodyn 41:666–682

    Article  Google Scholar 

  • Renaud E, Robelin C, Gheribi AE, Chartrand P (2011) Thermodynamic evaluation and optimization of the Li, Na, K, Mg, Ca, Sr//F, Cl reciprocal system. J Chem Thermodyn 43:1286–1298

    Article  Google Scholar 

  • Richardson CK, Holland HD (1979) The solubility of fluorite in hydrothermal solutions, an experimental study. Geochim Cosmochim Acta 43:1313–1325

    Article  Google Scholar 

  • Rickers K, Thomas R, Heinrich W (2006) The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions. Mineral Deposita 41:229–245

    Article  Google Scholar 

  • Roman DC, Cashman KV, Gardner CA, Wallace PJ, Donovan JJ (2006) Storage and interaction of compositionally heterogeneous magmas from the 1986 eruption of Augustine Volcano, Alaska. Bull Volcanol 68:240–254

    Article  Google Scholar 

  • Rowe JJ, Fournier RO, Morey GW (1967) The system water-sodium oxide-silicon dioxide at 200, 250, and 300o. Inorg Chem 6:1183–1188

    Article  Google Scholar 

  • Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980 eruption of Mount St. Helens 1. Melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947

    Article  Google Scholar 

  • Rutlin JL (1998) Chemical reactions and mineral formation during sodium aluminium fluoride attack on aluminosilicate and anorthite based refractories. Dr-Ing. Thesis, Norwegian University of Science and Technology, Trondheim, p 167

    Google Scholar 

  • Rutlin J, Grande T (1997) Fluoride attack on alumino-silicate refractories in aluminium electrolysis cells. Light Metals 1997:295–301

    Google Scholar 

  • Rutlin J, Grande T (1998) Molten fluoride attack on anorthite based powder barrier materials in aluminum electrolysis cells. Light Metals 1998:589–595

    Google Scholar 

  • Ryabchikov ID, Solovova IP, Babanskii AD, Fauzi K (1996) Fluorine mobilization and bonding at magmatic and postmagmatic stages in rare-metal granites: evidence from the Homrat Akarem deposit (Egypt). Geochem Int 34:347–350

    Google Scholar 

  • Ryzhenko BN, Bryzgalin OV, Artamkina IY , Spasennykh MY, Shapkin AI (1985) An electrostatic model for the electrolytic dissociation of inorganic substances dissolved in water. Geochem Int 22:138–144

    Google Scholar 

  • Sakoma EM, Martin RF, Williams-Jones AE (2000) The late stages of evolution of the Kwandonkaya A-type granite complex, Nigeria, as deduced from mafic minerals. J Afr Earth Sci 30:329–350

    Article  Google Scholar 

  • Sallet R (2000) Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F–OH biotite-apatite thermometer grid. Lithos 50:241–253

    Article  Google Scholar 

  • Sallet R, Moritz R, Fontignie D (2000) Fluorite 87Sr/86Sr and REE constraints on fluid-melt relations, crystallization time span and bulk DSr of evolved high-silica rhyolites, Tabuleiro granites, Santa Catarina, Brazil. Chem Geol 164:81–92

    Article  Google Scholar 

  • Sandland TO, Du LS, Stebbins F, Webster JD (2004) Structure of Cl-containing silicate and aluminosilicate glasses: a Cl-35 MAS–NMR study. Geochim Cosmochim Acta 68:5059–5069

    Article  Google Scholar 

  • Sauerwald F, Dombois HE (1954) Über die allgemeinen Formen der Dreistoff-Diagramme mit zwei eutektischen binären Systemen und einem binären Mischkristallsystem mit Mischungslücke und kritischem Punkt, sowie das System KCl–NaCl–NaF. Z Anorg Allg Chem 277:60–72

    Article  Google Scholar 

  • Scaillet B, Macdonald R (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. J Petrol 42:825–845

    Article  Google Scholar 

  • Scaillet B, Macdonald R (2004) Fluorite stability in silicic magmas. Contrib Mineral Petrol 147:319–329

    Article  Google Scholar 

  • Schafer B, Frischknecht R, Gunther D, Dingwell DB (1999) Determination of trace-element partitioning between fluid and melt using LA-ICP-MS analysis of synthetic fluid inclusions in glass. Eur J Mineral 11:415–426

    Article  Google Scholar 

  • Schaller T, Dingwell DB, Keppler H, Knoeller W, Merwin L, Sebald A (1992) Fluorine in silicate glasses: a multinuclear nuclear magnetic resonance study. Geochim Cosmochim Acta 56:701–707

    Article  Google Scholar 

  • Schmidt C, Bodnar RJ (2000) Synthetic fluid inclusions: XVI. PVTX properties in the system H2O–NaCl–CO2 at elevated temperatures, pressures, and salinities. Geochim Cosmochim Acta 64:3853–3869

    Article  Google Scholar 

  • Schwartz MO, Surjono (1990) Greisenization and albitization at the Tikus tin-tungsten deposit, Belitung, Indonesia. Econ Geol 85:691–713

    Google Scholar 

  • Seo JH, Heinrich CA (2013) Selective copper diffusion into quartz-hosted vapor inclusions: evidence from other host minerals, driving forces, and consequences for Cu–Au ore formation. Geochim Cosmochim Acta 113:60–69

    Article  Google Scholar 

  • Seo JH, Guillong M, Heinrich CA (2009) The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits. Earth Planet Sci Lett 282:323–328

    Article  Google Scholar 

  • Seward TM (1989) The hydrothermal chemistry of gold and its implications for ore formation: boiling and conductive cooling as examples. Econ Geol Monogr 6:398–404

    Google Scholar 

  • Shand SJ (1927) Eruptive rocks: their genesis, composition, and classification with a chapter on meteorites. Wiley, New York, p 360

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Article  Google Scholar 

  • Shchekina TI, Gramenitskiy EN, Alferyeva Y (2013) Leucocratic magmatic melts with the maximum fluorine concentrations: experiment and relations in nature. Petrology 21:454–470

    Article  Google Scholar 

  • Shinohara H (1987) Partition of chlorine compounds in the system silicate melt and hydrothermal solutions. Doctoral dissertation, Tokyo Institute of Technology, p 192

    Google Scholar 

  • Shinohara H (1994) Exsolution of immiscible vapor and liquid phases from a crystallizing silicate melt—implications for chlorine and metal transport. Geochim Cosmochim Acta 58:5215–5221

    Article  Google Scholar 

  • Shinohara H (2009) A missing link between volcanic degassing and experimental studies on chloride partitioning. Chem Geol 263:51–59

    Article  Google Scholar 

  • Shinohara H, Iiyama JT, Matsuo S (1989) Partition of chlorine compounds between silicate melt and hydrothermal solutions 1. Partition of NaCl–KCl. Geochim Cosmochim Acta 53:2617–2630

    Article  Google Scholar 

  • Shmulovich KI, Graham CM (1999) An experimental study of phase equilibria in the system H2O–CO2–NaCl at 800 °C and 9 kbar. Contrib Mineral Petrol 136:247–257

    Article  Google Scholar 

  • Shmulovich KI, Graham CM (2004) An experimental study of phase equilibria in the systems H2O–CO2–CaCl2 and H2O–CO2–NaCl at high pressures and temperatures (500–800 °C, 0.5-0.9 GPa): geological and geophysical applications. Contrib Mineral Petrol 146:450–462

    Article  Google Scholar 

  • Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim Cosmochim Acta 52:2009–2036

    Article  Google Scholar 

  • Shock EL, Helgeson HC, Sverjensky DA (1989) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53:2157–2183

    Article  Google Scholar 

  • Shock EL, Oelkers EH, Johnson JW, Sverjensky DA, Helgeson HC (1992) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000°C and 5 kbar. J Chem Soc Faraday Trans 88:803–826

    Article  Google Scholar 

  • Signorelli S, Carroll MR (2000) Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim Cosmochim Acta 64:2851–2862

    Article  Google Scholar 

  • Signorelli S, Carroll MR (2002) Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contrib Mineral Petrol 143:209–218

    Article  Google Scholar 

  • Siljan OJ, Grande T, Schøning C (2001) Refractories for aluminium electrolysis cells. Part I: deterioration mechanisms based on phase equilibria. Aluminium 77:294–300

    Google Scholar 

  • Simmons WB Jr, Heinrich EW (1975) A summary of the petrogenesis of the granite-pegmatite system in the northern end of the Pikes Peak batholith. Forschr Mineral 52:251–264

    Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2004) Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochim Cosmochim Acta 68:4905–4914

    Article  Google Scholar 

  • Simon AC, Frank MR, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2005) Gold partitioning in melt-vapor-brine systems. Geochim Cosmochim Acta 69:3321–3335

    Article  Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2006) Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage. Geochim Cosmochim Acta 70:5583–5600

    Article  Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2007) The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochim Cosmochim Acta 71:1764–1782

    Article  Google Scholar 

  • Sirbescu MLC, Nabelek PI (2003a) Dawsonite: an inclusion mineral in quartz from the Tin Mountain pegmatite, Black Hills, South Dakota. Am Mineral 88:1055–1059

    Article  Google Scholar 

  • Sirbescu MLC, Nabelek PI (2003b) Crustal melts below 400 °C. Geology 31:685–688

    Article  Google Scholar 

  • Skjerlie KP, Johnston AD (1992) Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: implications for the generation of A-type granites. Geology 20:263–266

    Article  Google Scholar 

  • Snow RJ, Welch BJ (1972) Reactions in the cryolite-silica system. Proc Australas Inst Min Metall 241:81–86

    Google Scholar 

  • Sourirajan S, Kennedy GC (1962) The system H2O–NaCl at elevated temperatures and pressures. Am J Sci 260:115–141

    Article  Google Scholar 

  • Stalder R, Ulmer P, Thompson AB, Günter D (2000) Experimental approach to constrain second critical end-points in fluid silicate systems: near-solidus fluids and melts in the system albite-H2O. Am Mineral 85:68–77

    Article  Google Scholar 

  • Stebbins JF, Zeng Q (2000) Cation ordering at fluoride sites in silicate glasses: a high-resolution 19F NMR study. J Non-Crystal Solids 262:1–5

    Article  Google Scholar 

  • Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2015) Synthetic fluid inclusions XX. Critical PTx properties of H2O–FeCl2 fluids. Geochim Cosmochim Acta 148:50–61

    Google Scholar 

  • Štemprok M (1987) Greisenization (a review). Geol Rundsch 76:169–175

    Article  Google Scholar 

  • Štemprok M (1991) Ongonite from Ongon Khairkhan, Mongolia. Mineral Petrol 43:255–273

    Article  Google Scholar 

  • Štemprok M, Seltmann R (1994) The metallogeny of the Erzgebirge (Krušné hory). In: Seltmann R, Kämpf H, Möller P (eds) Metallogeny of collisional orogens. Czech Geological Survey, Prague, pp 61–69

    Google Scholar 

  • Sterner SM, Chou IM, Downs RT, Pitzer KS (1992) Phase relations in the system NaCl–KCl–H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures. Geochim Cosmochim Acta 56:2295–2309

    Article  Google Scholar 

  • Sterten Å (1980) Structural entities in NaF–AlF3 melts containing alumina. Electrochim Acta 25:1673–1677

    Article  Google Scholar 

  • Stewart DB (1978) Petrogenesis of lithium-rich pegmatites. Am Mineral 63:970–980

    Google Scholar 

  • Stilling AB (1998) Bulk composition of the Tanco pegmatite at Bernic Lake, Manitoba, Canada. M.Sc. thesis, University of Manitoba, Winnipeg, p 76

    Google Scholar 

  • Stone M (1968) A study of the Praa Sands elvan and its bearing on the origin of elvans. Proc Ussher Soc 2:37–42

    Google Scholar 

  • Stormer JC Jr, Carmichael ISE (1970) Villiaumite and the occurrence of fluoride minerals in igneous rocks. Am Mineral 55:126–134

    Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203

    Article  Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz mineralogical tables. Chemical-structural classification system, 9th edn. Schweizerbart, Stuttgart, p 870

    Google Scholar 

  • Student JJ, Bodnar RJ (1999) Synthetic fluid inclusions XIV: coexisting silicate melt and aqueous fluid inclusions in the haplogranite–H2O–NaCl–KCl system. J Petrol 40:1509–1525

    Article  Google Scholar 

  • Tagirov B, Schott J (2001) Aluminum speciation in crustal fluids revisited. Geochim Cosmochim Acta 65:3965–3992

    Article  Google Scholar 

  • Tagirov B, Schott J, Harrichoury JC, Salvi S (2002) Experimental study of aluminum speciation in fluoride-rich supercritical fluids. Geochim Cosmochim Acta 66:2013–2024

    Article  Google Scholar 

  • Tanger JC IV, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am J Sci 288:19–88

    Article  Google Scholar 

  • Tattich BC, Candela PA, Piccoli PM, Bodnar RJ (2015) Copper partitioning between felsic melt and H2O–CO2 bearing saline fluids. Geochim Cosmochim Acta 148:81–89

    Article  Google Scholar 

  • Taylor M, Smith RW, Ahler BA (1984) Gorceixite in topaz greisen assemblages, Silvermine area, Missouri. Am Mineral 69:984–986

    Google Scholar 

  • Thomas R, Davidson P (2012) Evidence of a water-rich silica gel state during the formation of a simple pegmatite. Mineral Mag 76:2785–2801

    Article  Google Scholar 

  • Thomas R, Webster JD (2000) Strong tin enrichment in a pegmatite-forming melt. Mineral Deposita 35:570–582

    Article  Google Scholar 

  • Thomas R, Webster JD, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Mineral Petrol 139:394–401

    Article  Google Scholar 

  • Thomas R, Förster HJ, Rückers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601

    Article  Google Scholar 

  • Timofeev A, Migdisov AA, Williams-Jones AE (2015) An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochim Cosmochim Acta 158:103–111

    Article  Google Scholar 

  • Tsay A, Zajacz Z, Sanchez-Valle C (2014) Efficient mobilization and fractionation of rare-earth elements by aqueous fluids upon slab dehydration. Earth Planet Sci Lett 398:101–112

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem 74:153

    Google Scholar 

  • Ueda S, Maeda M (1999) Phase-diagram study for the Al2O3–CaF2–SiO2 system. Metall Mater Trans 30B:921–925

    Article  Google Scholar 

  • Ulrich T, Mavrogenes J (2008) An experimental study of the solubility of molybdenum in H2O and KCl–H2O solutions from 500 °C to 800 °C, and 150 to 300 MPa. Geochim Cosmochim Acta 72:2316–2330

    Article  Google Scholar 

  • Ulrich T, Gunther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679

    Article  Google Scholar 

  • Urabe T (1985) Aluminous granite as a source magma of hydrothermal ore deposits—an experimental study. Econ Geol 80:148–157

    Article  Google Scholar 

  • Urabe T (1987) The effect of pressure on the partitioning ratios of lead and zinc between vapor and rhyolite melts. Econ Geol 82:1049–1052

    Article  Google Scholar 

  • Urusova MA, Ravich MI (1966) Phase equilibria in the potassium fluoride-water system at elevated temperatures. Russ J Inorg Chem 11:353–357

    Google Scholar 

  • Valyashko V, Urusova M (2003) Solubility behavior in ternary water-salt systems under sub- and supercritical conditions. Monatsh Chem 134:679–692

    Article  Google Scholar 

  • Van Lichtervelde M, Holtz F, Hanchar JM (2010) Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts. Contrib Mineral Petrol 160:17–32

    Article  Google Scholar 

  • Vasyukova O, Williams-Jones AE (2014) Fluoride-silicate melt immisciblity and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Québec-Labrador, Canada. Geochim Cosmochim Acta 139:110–130

    Article  Google Scholar 

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31

    Article  Google Scholar 

  • Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143:673–683

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Kamenetsky M, Dulski P, Dingwell DB (2005) Partitioning of lanthanides and Y between immiscible silicate and fluorite melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim Cosmochim Acta 69:2847–2860

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluorie, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40

    Article  Google Scholar 

  • Villemant B, Boudon G (1999) H2O and halogen (F, Cl, Br) behaviour during shallow magma degassing processes. Earth Planet Sci Lett 168:271–286

    Article  Google Scholar 

  • Vladimirov AG, Kruk NN, Chupin VP, Turkina ON, Rudnev SM, Vladimirov VG, Titov AV (1991) Topaz-protolithionite granites and ongonites of the Bazardara ore formation (south-eastern Pamir). Soviet Geol Geophys 32:34–41

    Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Walther JV (1986) Mineral solubilities in supercritical H2O solutions. Pure Applied Chem 58:1585–1598

    Article  Google Scholar 

  • Walther JV (2001) Experimental determination and analysis of the solubility of corundum in 0.1 and 0.5 m NaCl solutions between 400 and 600 °C from 0.5 to 2.0 kbar. Geochim Cosmochim Acta 65:2843–2851

    Article  Google Scholar 

  • Walther JV, Helgeson HC (1977) Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. Am J Sci 277:1315–1351

    Article  Google Scholar 

  • Wang L, Wang H, Huang Z (1997) Discovery of three-end member components in Li-F granites and the origin of their liquid segregation. Geol Explor 33:11–20 (in Chinese)

    Google Scholar 

  • Wang L, Wang H, Huang Z (2000) REE geochemical indicatrices of Li–F granite liquid segregation. Chinese J Geochem 19:203–216

    Article  Google Scholar 

  • Wang P, Anderko A, Springer RD, Kosinski JJ, Lencka MM (2010) Modeling chemical and phase equilibria in geochemical systems using a speciation-based model. J Geochem Expl 106:219–225

    Article  Google Scholar 

  • Wang P, Kosinski JJ, Lencka MM, Anderko A, Springer RD (2013) Thermodynamic modeling of boric acid and selected metal borate systems. Pure Appl Chem 85:2117–2144

    Article  Google Scholar 

  • Wasternack J, Martens S, Gottesmann B (1995) Field and petrographic study of brecciation and greisenization phenomena in the Gottesberg tin deposit (Saxony, Germany). Z Geol Wiss 23:619–642

    Google Scholar 

  • Webster JD (1990) Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt. Implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contrib Mineral Petrol 104:424–438

    Article  Google Scholar 

  • Webster JD (1992) Fluid-melt interactions involving Cl-rich granites: experimental study from 2 to 8 kbar. Geochim Cosmochim Acta 56:659–678

    Article  Google Scholar 

  • Webster JD (1997a) Chloride solubility in felsic melts and the role of chloride in magmatic degassing. J Petrol 38:1793–1807

    Article  Google Scholar 

  • Webster JD (1997b) Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport. Geochim Cosmochim Acta 61:1017–1029

    Article  Google Scholar 

  • Webster JD (2004) The exsolution of magmatic hydrosaline chloride liquids. Chem Geol 210:33–48

    Article  Google Scholar 

  • Webster JD, De Vivo B (2002) Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. Am Mineral 87:1046–1061

    Article  Google Scholar 

  • Webster JD, Duffield WA (1994) Extreme halogen abundances in tin-rich magma of the Taylor Creek Rhyolite, New Mexico. Econ Geol 89:840–850

    Article  Google Scholar 

  • Webster JD, Holloway JR (1988) Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: new implications for granitic differentiation and ore deposition. Geochim Cosmochim Acta 52:2091–2105

    Article  Google Scholar 

  • Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geol Soc Am Spec Pap 246:21–34

    Google Scholar 

  • Webster JD, Rebbert CR (1998) Experimental investigation of H2O and Cl- solubilities in F-enriched silicate liquids; implications for volatile saturation of topaz rhyolite magmas. Contrib Mineral Petrol 132:198–207

    Article  Google Scholar 

  • Webster JD, Rebbert CR (2001) The geochemical signature of fluid-saturated magma determined from silicate melt inclusions in Asension Island granite xenoliths. Geochim Cosmochim Acta 65:123–136

    Article  Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1987) Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah. Geochim Cosmochim Acta 51:389–402

    Article  Google Scholar 

  • Webster JD, Burt DM, Aguillon RA (1996) Volatile and lithophile trace-element geochemistry of Mexican tin rhyolite magmas deduced from melt inclusions. Geochim Cosmochim Acta 60:3267–3283

    Article  Google Scholar 

  • Webster JD, Thomas R, Rhede D, Forster HJ, Seltmann R (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochim Cosmochim Acta 61:2589–2604

    Article  Google Scholar 

  • Webster JD, Thomas R, Veksler I, Rhede D, Seltmann R, Förster HJ (1998) Late-stage processes in P- and F-rich granitic magmas. Acta Univ Carol Geol 42:181–188

    Google Scholar 

  • Webster J, Thomas R, Förster HJ, Seltmann R, Tappen C (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineral Deposita 39:452–472

    Article  Google Scholar 

  • Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of Cl and F in the system apatite-melt-fluid. II: felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73:559–581

    Article  Google Scholar 

  • Webster JD, Vetere F, Botcharnikov RE, Goldoff B, McBirney A, Doherty AL (2015) Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250 °C: applications to magmas of Augustine Volcano, Alaska. Am Mineral 100:522–535

    Article  Google Scholar 

  • Weidner JR, Martin RF (1987) Phase equilibria of a fluorine-rich leucogranite from the St. Austell pluton. Cornwall. Geochim Cosmochim Acta 51:1591–1597

    Article  Google Scholar 

  • Weill DF, Fyfe WS (1964) The 1010o and 800o isothermal sections in the system Na3AlF6–Al2O3–SiO2. J Electrochem Soc 111:582–585

    Article  Google Scholar 

  • Wen S, Nekvasil H (1994) SOLVCALC: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comp Geosci 20:1025–1040

    Article  Google Scholar 

  • Wenk HR, Bulakh A (2004) Minerals. Their constitution and origin. Cambridge Univ Press, Cambridge, p 666

    Book  Google Scholar 

  • Westrich HR, Eichelberger JC, Hervig RL (1991) Degassing of the 1912 Katami magmas. Geophys Res Lett 18:1561–1564

    Article  Google Scholar 

  • Wilke M, Jahn S, Schmidt C, Dubrail J, Appel K, Borchert M, Kvashnina K, Pascarelli S, Manning CE (2013) Insights from X-ray absorption-fluorescence spectroscopy and ab-initio molecular dynamics on concentration and complexation of Zr and Hf in aqueous fluids at high pressure and temperature. J Phys Conf Ser 430:012122

    Article  Google Scholar 

  • Wilkinson JJ, Nolan J, Rankin AH (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology 24:1059–1062

    Article  Google Scholar 

  • Williams TJ, Candela PA, Piccoli PM (1995) The partitioning of copper between silicate melts and two-phase aqueous fluids: an experimental investigation at 1 kbar, 800 °C and 0.5 kbar, 850 °C. Contrib Mineral Petrol 121:388–399

    Article  Google Scholar 

  • Williams TJ, Candela PA, Piccoli PM (1997) Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation. Contrib Mineral Petrol 128:114–126

    Article  Google Scholar 

  • Williams-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5:281–287

    Article  Google Scholar 

  • Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Williamson BJ, Stanley CJ, Wilkinson JJ (1997) Implications from inclusions in topaz for greisenisation and mineralisation in the Hensbarrow topaz granite, Cornwall, England. Contrib Mineral Petrol 127:119–128

    Article  Google Scholar 

  • Williamson BJ, Wilkinson JJ, Luckham PF, Stanley CJ (2002) Formation of coagulated colloidal silica in high-temperature mineralizing fluids. Mineral Mag 64:547–553

    Article  Google Scholar 

  • Witt WK (1988) Evolution of high-temperature hydrothermal fluids associated with greisenization and feldspathic alteration of a tin-mineralized granite, northeast Queensland. Econ Geol 83:310–334

    Article  Google Scholar 

  • Wood SA, Samson IM (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Rev Econ Geol 10:33–80

    Google Scholar 

  • Woodland AB, Walther JV (1987) Experimental determination of the solubility of the assemblage paragonite, albite, and quartz in supercritical H2O. Geochim Cosmochim Acta 51:365–372

    Article  Google Scholar 

  • Wyllie PJ (1979) Magmas and volatile components. Am Mineral 64:469–500

    Google Scholar 

  • Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in the upwelling mantle. J Petrol 41:1195–1206

    Article  Google Scholar 

  • Wyllie PJ, Tuttle OF (1961) Experimental investigation of silicate systems containing two volatile components. Part II. The effects of NH3 and HF, in addition to H2O, on the melting temperatures of albite and granite. Am J Sci 259:128–143

    Article  Google Scholar 

  • Xiong XL, Rao B, Chen FR, Zhu JC, Zhao ZH (2002) Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-saturated conditions. J Asian Earth Sci 21:175–188

    Article  Google Scholar 

  • Yardley BWD (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–632

    Article  Google Scholar 

  • Yardley BWD, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3:1–123

    Article  Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICP MS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197

    Article  Google Scholar 

  • Zajacz Z, Hanley JJ, Heinrich CA, Halter WE, Guillong M (2009) Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions: are all metal concentrations unmodified? Geochim Cosmochim Acta 73:3013–3027

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Heinrich CA, Guillong M (2010) Alkali metals control the release of gold from volatile-rich magmas. Earth Planet Sci Lett 297:50–56

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Tossell JA (2011) The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes. Geochim Cosmochim Acta 75:2811–2827

    Article  Google Scholar 

  • Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C (2012a) The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochim Cosmochim Acta 89:81–101

    Article  Google Scholar 

  • Zajacz Z, Candela PA, Piccoli PM, Sanchez-Valle C, Wälle M (2012b) Gold and copper in volatile saturated mafic to intermediate magmas: solubilities, partitioning and implications for ore deposit formation. Geochim Cosmochim Acta 91:140–159

    Article  Google Scholar 

  • Zaraisky GP, Korzhinskaya V, Kotova N (2010) Experimental studie of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550°C and 50 to 100 MPa. Mineral Petrol 99:287–300

    Article  Google Scholar 

  • Zeng Q, Stebbins JF (2000) Fluoride sites in aluminosilicate glasses: high-resolution 19F NMR results. Am Mineral 85:863–867

    Article  Google Scholar 

  • Zezin DY, Migdisov AA, Williams-Jones AE (2007) The solubility of gold in hydrogen sulfide gas: an experimental study. Geochim Cosmochim Acta 71:3070–3081

    Article  Google Scholar 

  • Zhang Y (1982) Electronegativities of elements in valence states and their applications. 2. A scale for strength of Lewis acids. Inorg Chem 21:3889–3893

    Article  Google Scholar 

  • Zhang Y, Frantz JD (1989) Experimental determination of the compositional limits of immiscibility in the system CaCl2–H2O–CO2 at high temperatures and pressures using synthetic fluid inclusions. Chem Geol 74:289–308

    Article  Google Scholar 

  • Zhang Y, Gupta S, Sahai Y, Rapp RA (2002) Modeling of the solubility of alumina in the NaF–AlF3 system at 1300 K. Metall Mater Trans 33B:315–319

    Article  Google Scholar 

  • Zhang C, Holtz F, Ma C, Wolff PE, Li X (2012a) Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China). Contrib Mineral Petrol 164:859–879

    Article  Google Scholar 

  • Zhang L, Audétat A, Dolejš D (2012b) Solubility of molybdenite (MoS2) in aqueous fluids at 600–800 °C, 200 MPa: a synthetic fluid inclusion study. Geochim Cosmochim Acta 77:175–185

    Article  Google Scholar 

  • Zhu JC, Liu W (1990) Topazite-ongonite relationships and its bearing on vertical zonatio in rare-metal granites: evidence from Xianghualing district, Hunan Province, China. In: Proceedings of the 8th quadrennial IAGOD symposium. Schweizerbart, Stuttgart, pp 303–313

    Google Scholar 

  • Zhu C, Sverjensky DA (1991) Partitioning of F–Cl–OH between minerals and hydrothermal fluids. Geochim Cosmochim Acta 55:1837–1858

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1992) F–Cl–OH partitioning between biotite and apatite. Geochim Cosmochim Acta 56:3435–3467

    Article  Google Scholar 

  • Zhu J, Liu W, Zhou F (1993) Ongonite and topazite in dike no. 431 of Xianghualing district and their spatial zonation and genetic relationship. Acta Petrol Sin 9:158–166 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

Preparation of this contribution was financially supported by the Czech Science Foundation Project Nr. P210/12/0986 (to D.D.) and by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (to Z.Z.). Reviews by Hans Keppler, David London, and Jake Lowerstern, coupled with editoral work by Daniel Harlov and Leonid Aranovich, helped to improve the manuscript over all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dolejš .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dolejš, D., Zajacz, Z. (2018). Halogens in Silicic Magmas and Their Hydrothermal Systems. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_7

Download citation

Publish with us

Policies and ethics