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Abstract Synthetic polymers are one of the most significant pollutants in the

aquatic environment. Most research focused on small plastic particles, so-called

microplastics (particle size, 1–5,000 μm). Compared to macroplastics, the small

size complicates their determination in environmental samples and demands for

more sophisticated analytical approaches. The detection methods of microplastics

reported in the past are highly diverse. This chapter summarizes different strategies

for the sampling of water and sediment and sample treatments, including the

separation of plastic particles and removal of natural debris that are necessary

prior the identification of microplastics. Moreover, the techniques used for the

identification of plastics particles are presented in this chapter.

With the application of the method described in this chapter, microplastics were

detected in freshwater systems, such as rivers and lakes worldwide. The abundance

of microplastics reported in the studies varied in more than three orders of

magnitude.

Furthermore, microplastics are not uniform, as there are many different types of

synthetic polymers commercially available. Consequently, a variety of different

polymer types is present in the aquatic environment. The knowledge on the type of

polymer provides additional information for scientists: the type of polymer dictates

its physicochemical properties and the degradation. The environmental degradation

of plastics is an important factor for the formation, distribution, and accumulation

of microplastics in the aquatic system. Thus, this chapter also summarizes the

degradation pathways for synthetic polymers in the environment.
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1 Analysis of Microplastics: Sampling, Sample

Preparation, and Identification

The investigation of small synthetic polymer particles (size<5 mm), so-called

microplastics, strongly depends on appropriate analytical methods. These particles are

present in the aquatic environment due to mechanical degradation of macroplastics

(size>5 mm) or the introduction of man-made microparticles. The analysis of

microplastics is a new challenge for analytical scientists. The small size ofmicroplastics

complicates their determination in environmental samples compared to macroplastics

and demands for more sophisticated analytical approaches. Microplastics are hetero-

geneously distributed in the environment, and this impedes the representative sampling

of sediments and water. The sample matrix, independent of the sampled environmental

compartment, contains a high burden of particles of natural origin that strongly interfere

with the visual detection of microplastics. Therefore, suitable methods for the sample

preparation are needed to extract microplastics and reduce the number of natural

particles. Moreover, an analytical method for the identification and confirmation of

the plastic particles is mandatory to obtain reliable results. A wide range of different

sampling methods, sample treatments, and detection methods were described (Fig. 1).

1.1 Sampling of Microplastics

The sampling of microplastics in the aquatic environment strongly depends on the

compartment that is the subject of interest. In general, this can be differentiated

between sampling of the aqueous phase (surface water, water column) and the

sediment phase (shoreline sediments, riverbed, or lakebed sediments).

1.1.1 Sampling of the Aqueous Phase

The concentrations of microplastics in aqueous samples are relatively low compared

to those in the sediments. Therefore, a large volume of the water samples (up to

hundreds of liter) is usually filtered during the sampling process to obtain a represen-

tative sample. Sampling of the water surface is carried out in most cases with neuston

or plankton nets supported by a flow meter to determine the accurate sample volume.

These nets are used in different mesh sizes ranging from50 to 3,000 μm,while 300 μm
is the most commonly used mesh size along all studies [1]. This approach leads to

nonquantitative sampling of microplastics with particle sizes<300 μm. The nets with

smaller mesh sizes are prone to clogging. To overcome this problem, newmethods are
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being developed using filter cascades that result in a size fractionation during the

sampling and the reduction of the matrix burden of the small mesh sizes [2].

Less frequently, a sample of the aqueous phase is taken below the water surface.

Sampling of the water column is carried out by direct filtration of the water with

submersible pumps or is reported by the acquisition of batch samples [3, 4].

1.1.2 Sampling of Sediments

There is no commonly accepted sampling strategy so far for sediment samples.

First, the sediments samples must be divided into samples from the shoreline and

the river- or lakebed. The collection of bed sediments by sediment grabs provides

Fig. 1 Possible strategies described in literature for the analysis of microplastics in sediment and

water samples starting with the sampling to the report of the results. The sample preparation is split

in pretreatment, the density separation, and the posttreatment of the separated microplastics.

Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy energy-dispersive

X-ray spectroscopy (SEM-EDS), pyrolysis- or thermal desorption-gas chromatography/mass

spectrometry (Pyr-GC/MS, TDS-GC/MS) are deployed for the analysis
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relatively comparable results due to the standardized sampling instrument [5]. The

applications of corers allows the determination of microplastic depth profiles but

results in small sample volumes (25 cm3) and is so far only reported for the marine

environment [6]. The differences between microplastic studies for the sampling of

shore sediments start with the selection of the sampled area. Shore sediments are

collected parallel, perpendicular, or randomly selected in different distances to the

shoreline. The majority of the studies reports the collection of grid samples with

sampling depths of 2–5 cm of the upper sediment layer [7, 8]. Other studies state the

sampling in relation to the lowest flotsam line of the waterbody [9, 10]. Sample

collection is usually carried out with stainless steel spoons, trowels, or shovels

[10, 11]. In addition, the sampling procedure used will affect how the corresponding

results are reported. For example, studies that use grid samples usually report

the results per surface sampled (e.g., m2), whereas studies based on aerial

bulk samples give the results referred to the volume or mass of the collected sample

(e.g., m3 or kg).

During the sampling and the sample preparation, it is important to avoid contact

with plastic equipment to keep the contamination by the method low. If plastic

vessels are included for transportation, blank samples must be also analyzed to

quantify their contribution to the microplastic load of the sample [8, 10]. In general,

blank samples need to be regarded in microplastic studies to estimate the limit of

quantification of each method used, as the limit of quantification (LOQ) is mainly

affected by the background contamination [12]. Especially studies dealing with

fibers often neglected the analysis of blank samples; thus, the results obtained might

be of limited validity. Moreover, the entire method starting from the sample

preparation to the analytical detection must be critically evaluated. Therefore, a

proper validation must be performed, which also allows a good comparability

between different studies. This includes, for example, the determination of

within-site variabilities for the sampling process or the determination of recovery

rates for the separation methods used during the sample preparation [10, 13, 14].

1.2 Sample Preparation

Even large microplastics like plastic pellets, especially aged and fouled ones, are

difficult to distinguish from natural matter in surface water samples with the naked

eye. Various methods were developed that allow the mechanical separation of

microplastics from the sediment and the removal or reduction of natural debris in

the sample prior to analysis of the separated particles. A variety of techniques have

been used during the sample treatment and the microplastic identification. Because

not all studies conducted extensive method validation including the determination

of recovery of the microplastic particles or did not provide experiments with blank

samples, the resulting data can lack comparability.
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1.2.1 Separation of Microplastics from Sediment Samples

In contrast to microplastics in water, which are easily filtered from the sample

during the sampling process, microplastics in sediment samples must be separated

in the first step of the sample preparation. A commonly used technique for the

separation of plastic particles from sediment particles is the density separation. In a

solution of high density, the microplastic particles float, while the very dense

sediment particles settle. Numerous different techniques are described in literature,

many of them based on the separation introduced by Thompson et al. [15]. Alter-

ations to this method include the use of different salts to create the dense liquid used

for separation and the development of different instrumental setups and different

pretreatment and posttreatment steps of the samples (compare Fig. 1).

In addition to sodium chloride, which was used by Thompson et al. [15] and

others, the application of sodium iodide and zinc chloride has also been reported [16–

18]. Sodium iodide, sodium tungstate, and zinc chloride offer the possibility to

produce solutions with higher densities than sodium chloride. As the density of a

saturated sodiumchloride solution (ρ� 1.2 g cm�3) is rather limited and does not offer

consistent separation of higher density polymers such as polyoxymethylene, polyvinyl

chloride (PVC), and polyethylene terephthalate (PET), sodium iodide, sodium

polytungstate (ρ � 1.6 g cm�3), and zinc chloride are viable choices. Density

separations in the microplastic research rarely use sodium polytungstate despite the

possibility of solutions with high density (ρ up to 1.6 g cm�3), as it is too expensive for

the application in large volume samples [11]. Sodium iodide (ρ � 1.6–1.8 g cm�3) is

usually combined with a pre-separation, based on elutriation that separates less dense

particles from heavier particles in an upward directed stream of gas or water. This

procedure is necessary to minimize the volume needed for the density separation due

to the high costs of sodium iodide [14, 16]. The application of zinc chloride enables

solutions with densities of ρ > 1.6–1.7 g cm�3 and is suitable for the separation of

most polymer types. Due to the lower costs compared to sodium tungstate and sodium

iodide, zinc chloride is frequently reported in recent studies [8]. However, the eco-

logical hazards of zinc chloride complicate the disposal of used solutions and con-

taminated sediments. Thus, the recycling of solutions containing zinc chloride,

sodium iodide, or sodium polytungstate offers a possibility to overcome the waste

management problem and reduce the material costs. To improve the effectivity, the

repeatability, and the ease of handling for the density separation method, different

setups were developed. The initial use of beakers or Erlenmeyer flask was substituted

by the use of separation funnels, vacuum-enhanced separation of the plastic particles,

or stainless steel separators with high sample volume capacity [9, 10, 13].

Recent developments focus on alternatives to density separation techniques.

Elutriation seems to be a suitable and cost-effective alternative even without

following density separation, yielding in good recoveries for polymers with densi-

ties of up to ρ ¼ 1.4, and the versatility of this method might be improved with a

pre-size fractionation of the sample [19].

A different approach includes accelerated solvent extraction (ASE) for the sep-

aration of plastics from soils. The extraction by ASE is carried out under higher
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pressure to increase the boiling point of the extraction solvent, which increases the

extraction speed. The process usually uses metal cells of small volume that can resist

the pressure. This method bypasses the need for further sample purification and

benefits of a high degree of automatization and allows for a quantitative extraction

of small plastic particles. However, the identification of extracts consisting ofmultiple

polymer types is complicated, and the size of the extracted sediment sample is limited

due to the small size of the extraction cell of the instrument [20].

1.2.2 Removal of Natural Debris

The identification of microplastic particles is often prevented by natural debris that

is present in the sample and accompanies the microplastics during the sampling of

water samples or the density separation. Thus, the destruction of natural debris or

biological material is unavoidable to minimize the possibility of misidentification

or underestimation of small plastic particles. The destruction of natural material can

be carried out by chemical or enzymatically catalyzed reactions. Chemical destruc-

tion of natural debris is achieved through the treatment of the sample with hydrogen

peroxide, mixtures of hydrogen peroxide and sulfuric acid, and Fenton-like reac-

tions prior or after the density separation [8, 18, 21]. These harsh conditions might

result in losses of plastics that are labile to oxidation or unstable in strong acidic

solutions, such as poly(methyl methacrylate) or polycarbonates.

To avoid the loss of synthetic polymers, which are not resistant against acidic

treatments, usage of sodium hydroxide was proposed. However, Cole et al. report

that the alkaline treatment with sodium hydroxide could damage some of the

synthetic polymers as well [22]. Dehaut et al. showed that the application of

potassium hydroxide is preferable for the destruction of organic material, as it

seems to attack the synthetic polymers less than the abovementioned methods [23].

Enzymatic treatments were developed for biota-richmarine surfacewater samples,

which allow the detection of pH-sensitive polymers [22]. Single-enzyme approaches

using proteinase K or mixtures of technical enzymes (lipase amylase, proteinase,

chitinase, cellulase) were used for the removal of biological material, as the enzymatic

digestion can be carried out under moderate experimental conditions in terms of pH

and temperature. Unfortunately, the use of enzymes involves several disadvantages.

Enzymatic treatments are, compared to chemical treatments, expensive and very time-

consuming and might not result in a complete removal of the natural debris.

1.3 Identification of Microplastics

In most studies, microplastics are first identified visually, before an identification of

the polymer type is undertaken. Larger particles can be identified with the naked eye,

whereas small microplastics are identified using binocular microscopes or scanning

electron microscopy (SEM) [6, 24, 25]. Early studies determined microplastic

56 S. Klein et al.



concentrations after visual inspection of the sample only. Depending on the efficiency

of the sample treatment and particle size, the visual identification is considered not

state of the art and often insufficient resulting in false-positive results. For this reason,

further spectroscopic or spectrometric methods are needed to ensure the unambiguous

identification of particles made from synthetic polymers.

Spectroscopic identification methods include Fourier transform infrared (FTIR)

spectroscopy and Raman spectroscopy. These methods are based on the energy

absorption by characteristic functional groups of the polymer particles. For larger

particles (approximately >500 μm), FTIR can be carried out using an attenuated

transverse reflection (ATR) unit as the particles need to be transferred on the crystal of

the ATR unit manually [9, 26]. Coupling of FTIR instruments to microscopes such as

reflectance or transmission micro-FTIR allows the detection of smaller microplastics

[27]. The use of FTIRmicroscopy in transmissionmode is only applicable for smaller

particles or thin films that do not fully absorb the IR beam.Moreover, special filters are

required in the sample treatment that are translucent to IR radiation, such as aluminum

oxide membranes. Both FTIR-based and Raman-based methods are limited in the

minimum particle size that can be determined by the physical diffraction of the light.

FTIR measurements in transmittance mode are limited for particles between 10 and

20 μm, while Raman instruments can measure particle with sizes that are one to two

orders of magnitude smaller, due to the smaller wavelengths that are applied for the

excitation. Identification of the polymers by FTIR and Raman is susceptible to

environmentally driven changes of the polymer surface or the additive application

during polymer processing. Thus, microbial fouling, soiling, adsorption of humic

acids, and colored plastics can interfere with the absorbance, reflection, or excitation

of the polymer molecules and might lead to misidentification or totally prevent

identification of the particles [28] (for an in-depth discussion on microplastic associ-

ated biofilms, see [29]). Besides the identification of the polymer type, visual images

of particles enable the determination of particle shape.

The application of pyrolysis-gas chromatography/mass spectrometry (Pyr-GC/MS)

allows the simultaneous determination of the polymer type and polymer additives by

combustion of the sample and the detection of the thermal degradation products of the

polymers [16, 30]. The identification of thermal degradation products serves as amarker

that is specific for each polymer. The degradation products are separated by GC prior

the detection of their specificmass to charge ratios in themass spectrometer. In contrast

to the spectroscopic techniques, Pyr-GC/MS is a destructive method, preventing any

further analysis of the plastic particles. Results obtained through Pyr-GC/MS analysis

are usually provided as the mass fraction or mass concentration of plastics. Therefore,

the determination of particle counts is not possible due to the combustion of the sample.

Thermal desorption GC/MS (TDS-GC/MS) in combination with thermogravimetric

analysis (TGA) coupled with a solid-phase adsorber enables higher initial sample sizes

compared to Pyr-GC/MS [31]. For this reason, more representative results might be

obtained for inhomogeneous samples with complex matrices.

SEM can be coupled with energy-dispersive X-ray spectroscopy (SEM-EDS),

which produces high-resolution images of the particles and provides an elemental

analysis of the measured objects. For SEM-EDS, the particle surface of the sample
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is scanned by an electron beam. The contact of the electron beam with the sample

surface results in the emission of secondary electrons and element-specific X-ray

radiation. Thus, an image of the particle can be created and the elemental compo-

sition can be identified by using SEM-EDS. It is, therefore, possible to distinguish

between microplastics and particles that are composed of inorganic elements, such

as aluminum silicates [32].

Alternatively, hardness tests are reported as inspection of the separated particles.

Pressure is applied to the particles by needles or tweezers. This precludes mis-

identifications of microplastics with fragile carbon or carbonate particles that break

during the test and are not removed or formed during the sample treatment

[33]. However, these tests are very time-consuming, do not provide exact polymer

identification, and are less accurate as other instrumental methods.

More specialized but promising approaches for the detection of microplastics are

described by Sgier et al. and Jungnickel et al. [34, 35]. The latter describe the

measurement and identification of microplastics by time-of-flight secondary ion

mass spectrometry. An imaging technique allows the visualization of the particles,

and the ionization of the polymer molecules is carried out by a primary ion source,

generating secondary ions of polymer fragments. As with Raman microscopy, this

technique enables the identification of particles smaller than 10μm.Sgier et al. detected

microplastics using flow cytometry combined with visual stochastic network embed-

ding (viSNE). viSNE is a tool for the visualization of high-dimensional cytometry data

by nonlinear dimension reduction onto two dimensions [36]. This method was capable

of detecting microplastic particles directly in environmental samples by using

nonbiological reference data sets for the interpretation of the viSNE analysis, although

the reliability of the microplastic identification needs to be proven in future studies.

2 Occurrence in the Aquatic Environment

Microplastic particles are present in surface water, sediments, and oceans all over

the world, for example, at the Italian, Singapore, and Portuguese coast, at beaches

of Hawaii, and islands of the equatorial Western Atlantic as well as at shores of

German and Greek islands [3, 11, 17, 37–40]. First reports of smaller plastic items

were primarily focused on plastic pellets that are used in the production of bulk

plastic items. Plastic pellets have been quantified on numerous beaches and coast-

lines, for instance, in New Zealand, Lebanon, and Spain [41–43]. However, indus-

trial plastic pellets only compose a small fraction of the numerous microscopic

plastic fragments present in the ocean and other aquatic systems [15]. Monitoring

studies often subdivide microplastics into categories of spheres, fibers, foams, and

fragments and report range in concentrations by up to four orders of magnitude,

spanning 1.3 particles kg�1 (German island) over 13.5 particles kg�1 (equatorial

Western Atlantic) to 2175 particles kg�1 (Italy). All these studies were carried out

in the marine environment, and freshwater systems have attracted less attention

until 2010.
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In freshwater environments of lakes and rivers, studies also report highly hetero-

geneous concentrations comparable to those reported for the marine environment.

High within-site variabilities, as well as different units used for microplastic quanti-

tation, complicate the comparison of microplastic concentrations in aquatic systems.

Microplastics in riverine systems were reported for large European rivers, e.g., the

river Rhine and the river Danube, as well as for tributaries such as the river Main.

Plastic particles in the river Danube were determined with high abundance and even

exceeded the number of fish larvae. Lechner et al. stated that the river might transport

high loads of plastic particles into the Black Sea [44]. Studies investigating the river

Rhine showed high abundances of microplastics, especially in the German section of

the river. Average concentrations amounted to approx. 900,000 particles km�2 for

surface water and up to 4000 particles kg�1 for shore sediments. In the Swiss part of

the rivers Rhône, Aubonne, Venoge, and Vuachière, microplastics were detected in

concentrations between 0.10 and 64 particles m3 (mean, 7 particles m�3; median,

0.36 particles m�3) [45]. Distinctly higher concentrations were detected in Chinese

river estuaries. The estuaries of the rivers Jiaojiang, Oujiang, and Minjiang, which all

are located in an urban region, contained microplastics in the range of 100–-

4100 particles m�3 [46].

A study conducted with lakeshore sediments collected from Lake Garda (Italy)

showed high abundances of polyethylene (PE) and polystyrene (PS) microplastics,

indicating the importance of buoyant microplastics for shore sediments. In addition,

polymer particles of a higher density, such as PVC and PET, were also identified in

this study underlining the variety of microplastics present in shore sediments

[8]. Microplastics were detected in concentrations between 108 and 1,108 particles m
�2 with notable spatial variation between the south and the north shore of the lake.

Faure et al. reported microplastics in the Swiss parts of Lake Geneva, Lake Con-

stance, Lake Neuchâtel, Lake Maggiore, Lake Zurich, and Lake Brienz. The con-

centrations of microplastics in lakeshore sediments varied between 20 and

7,200 particles m�2 (mean, 1,300 particles m�2; median, 270 particles m�2) and

are comparable with concentrations reported for Lake Garda. Between 11,000 and

220,000 particles km�2 of microplastics were detected in the surface water of the six

lakes mentioned. Microplastics were also detected in the Laurentian Great Lakes in

North America with concentrations ranging between 0 and 466,305 particles m�2

(mean, 42,533 particles m�2; median, 5,704 particles m�2). Higher abundances of

microplastics have been detected in proximity to urban areas [32]. The determination

of microplastics in gastrointestinal tract of fish from Lake Victoria (Tanzania) shows

first evidence for the microplastic pollution of African lakes [47] (microplastic uptake

biological interactions are discussed in Scherer et al. [48] of this volume). A

monitoring study of Lake Taihu in China detected up to 6,000,000 particles km�2

in surface water samples. In bulk water samples, microplastics were present in

concentrations between 3 and 26 particles L�1, while the sediments of Lake Taihu

contained microplastics in the range of 11–235 particles kg�1. The reported concen-

trations of microplastics in the sediments of Lake Taihu are lower compared to those

detected in the sediments of the European lakes. However, it needs to be taken into

account that lake-bottom sediments were sampled in Lake Taihu, whereas shore
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sediments were studied in the European lakes [49]. Lower concentrations of plastic

particles in Asian freshwaters were detected in the surface water samples of Lake

Hovsgol (Mongolia). Microplastics were quantified in the range of 997–-

4435 particles km�2, but it should be taken into account that the catchment area of

Lake Hovsgol is less populated compared to the abovementioned lakes [50]. For case

study discussions on microplastic occurrence in African and Asian freshwaters, see

Kahn et al. [51] and Chenxi et al. [52] of this volume.

3 Environmental Degradation of Synthetic Polymers

One of the reasons for the great versatility of many synthetic polymers is their high

resistance against environmental influences. However, this fact leads to extremely

low degradation and long residence times for synthetic polymers once they enter the

environment. Degradation of synthetic polymers can generally be classified as biotic

or abiotic, following different mechanisms, depending on a variety of physical,

chemical, or biological factors. During the degradation process, polymers are

converted into smaller molecular units (e.g., oligomers, monomers, or chemically

modified versions) and possibly are completely mineralized [53]. The most important

processes for the degradation of synthetic polymers can be divided into (Fig. 2):

• Physical degradation (abrasive forces, heating/cooling, freezing/thawing, wet-

ting/drying)

• Photodegradation (usually by UV light)

• Chemical degradation (oxidation or hydrolysis)

• Biodegradation by organisms (bacteria, fungi, algae)

Mechanical degradation is an important factor with regard to plastics in the

aquatic environment. In most cases, aging of the polymer by environmental influ-

ences, such as photodegradation or chemical degradation of additives, changes the

polymer properties and leads to embrittlement of the polymer [54]. The recalcitrant

material is then shredded into smaller particles by friction forces occurring during

the movement through different environmental habitats (also see Kooi et al. [55] of

this volume for a discussion on microplastics fate and transportation). This degra-

dation generally leads to smaller plastic particles, which can result in particles with

sizes between 1 and 5,000 μm. Such particles are classified as microplastics.

However, the mechanical degradation does not stop if the particles are within the

size range of microplastics. Thus, the formation of even smaller particles, so-called

nanoplastics, is very likely [56]. These nanoplastics could have different properties

compared to the original macroplastics or microplastics (for a discussion on

nanomaterials, see Rist and Hartmann [57] of this volume). In both cases, the

mechanical degradation leads to a decrease in particle size and consequently to

an increase in the surface area of the polymer particles, which results in faster

degradation due to higher reactivity.
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Under normal environmental conditions in aquatic systems, the temperature is

not high enough to start chemical changes of synthetic polymers; thus, thermal

degradation is not significant for freshwaters [58, 59].

The degradation of synthetic polymers in the environment on a molecular basis is

usually initiated by photooxidation (with UV radiation) or by hydrolysis and is

eventually followed by chemical oxidation [60]. The predominant mechanisms

strongly depend on the type of polymer, as there are numerous different compositions

of synthetic polymers produced (i.e., polyolefins, polyesters, polyamides). After the

initial reactions, the molecular weight of the polymer is decreased, and the reacted

groups become available for microbial degradation. Photooxidation is usually a fast

process, but the degradation rate also depends on the extent of additives in a particular

polymer that could prevent oxidation processes (i.e., antioxidants). Moreover, the

photodegradation of plastics floating in the aquatic environment is slower compared

to degradation in terrestrial exposure [61]. Experiments on the disintegration of PE

and PS showed faster degradation on the water surface compared to plastics that

partially or completely submerged, likely related to the decreasing intensity of light

and thus to the lower rate of photooxidation [62]. For this reason, many plastics can

stay in the aquatic environment for decades or hundreds of years.

Biodegradation of synthetic polymers can occur in two different environments

(aerobic and anaerobic). The extent of the degradation of polymers intoCO2, H2O,N2,

H2, CH4, salts, minerals, and biomass (mineralization) can be full or partial [63]. Par-

tial or primary degradation of the polymer chain leads to stable or temporarily stable

transformation products. Biodegradation is coupled to three essential criteria:

1. Microorganisms must be present that can depolymerize the target substance and

mineralize the monomeric compounds with enzymes of an appropriate meta-

bolic pathway.

2. The environmental parameters, such as temperature, pH, moisture, and salinity

must provide conditions that are necessary for biodegradation.

Fig. 2 Degradation pathways of synthetic polymers in the aquatic environment with degradation

processes involved and intermediate steps until complete mineralization
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3. The morphology of polymer particles must render the attachment of microor-

ganisms and the formation of a biofilm, while the structure of the polymeric

substrate, e.g., chemical bonds, degree of polymerization, degree of branching,

and parameter, such as hydrophobicity or crystallinity, must not hinder micro-

bial actions.

Since the size of synthetic polymers is generally too large to penetrate the cell

membranes of microorganisms, the first step of biotic degradation is the cleavage of

side chains or the polymer backbone and the formation of smaller polymer units

(monomers, oligomers) by extracellular enzymes [64]. In most cases, this first step

of depolymerization involves an enzymatically catalyzed hydrolysis of amides,

esters, or urethane bonds. These smaller molecules can then be absorbed by

microorganisms and metabolized. Of course, abiotic hydrolysis can also result in

intermediates that are then further metabolized by microorganisms [65].

The complete biotic degradations of poly(ε-caprolactam) and water-soluble

polyethylene glycol are well described in literature [66]. However, most of the

plastics occurring in the environment are water insoluble, and many of the synthetic

polymers present in the aquatic environment, such as PE, polypropylene (PP), PS,

and PET, degrade very slowly or not at all. The degradation of these polymers is

usually a combination of abiotic and biotic degradation pathways.

Polyolefins, such as PE and PP, represent a class of substances with high

industrial production volumes and are determined frequently in environmental

samples. These polymers are usually not biodegradable, as the alkyl backbone is

not accessible for microorganism and must undergo an abiotic transformation. The

alkyl backbone of polyolefins offers a high resistivity against hydrolysis but is

usually susceptible to oxidative degradation. To prevent this, additives are added

during the production process, and the oxidative or photooxidative degradation of

the polymer is delayed until the antioxidants are consumed. After the initial

oxidation of the surface of polyolefins, the degradation could occur in several

weeks but results in the formation of microplastics as possible intermediates

[67]. These smaller and oxidized plastic fragments are more susceptible to micro-

bial attack, e.g., biodegradation of PE is described for pre-oxidized fragments of the

original material by Pseudomonas sp. [68].

4 Conclusion

The results of studies worldwide highlight the great importance of microplastics for

freshwater ecosystems, as they are present in high abundance. Microplastics are

emerging contaminants in the aquatic environment, and attention should be focused

on a harmonized nomenclature of microplastic particles with official guidelines for

microplastic studies. The definition of microplastics often remains vague, and

different size classes are investigated in monitoring studies. For a thorough inves-

tigation of microplastic pollution, standardized methods, especially for the
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sampling of the different compartments, are a key factor for meaningful results. The

quantitation of microplastics differs due to the individual sampling method and

studies still lacking in comparability. Therefore, future studies should integrate

additional units to describe microplastic occurrence in their investigations. More-

over, an integral step of future investigations should be a sufficient validation of the

microplastic analysis, as different technological approaches might be used or future

technological improvements will be implemented for the determination of

microplastics. Important approaches, such as Raman-, FTIR-, and GC/MS-based

techniques, seem to be very versatile for the detection of microplastics, but a better

comparability of results obtained with either of these methods needs to be

established. Degradation of larger plastics will result in a constant source for new

microplastic particles of all size classes, and thus, as it is a slow process,

microplastics will be a relevant long-term threat.
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