Skip to main content

Restorative Challenges and How to Overcome Them

  • Chapter
  • First Online:
Management of Deep Carious Lesions

Abstract

Restoration of deep carious lesions may be challenging in clinical practice. Many generations of dentists have been trained to remove all weakened carious dentin. This may, however, easily lead to pulp exposure and subsequent endodontic treatment. Especially this type of treatment may weaken a tooth, and it has been documented that endodontically treated teeth are more prone to fracture.

New insights in the pathology of caries and the importance of a well-sealing restoration have led to changing treatment concepts. Selective carious tissue removal allows to avoid pulp exposure, but may also compromise the longevity of the restoration, mainly because of mechanical and adhesive reasons. Moreover, residual carious dentin is challenging with regard to radiographic diagnosis. In this chapter, these restorative challenges and possible solutions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fejerskov O, Nyvad B, Kidd E, editors. Dental caries. The disease and its clinical management. 3rd ed. Chichester, West Sussex: Wiley Blackwell; 2015.

    Google Scholar 

  2. Fejerskov O, Kidd E, editors. Dental caries. The disease and its clinical management. 2nd ed. Oxford: Blackwell Munksgaard; 2012.

    Google Scholar 

  3. Gruythuysen RJM, van Strijp AJPG, van Palestein Helderman WH, Frankenmolen FW. Non-restorative treatment of cavities in temporary dentition: effective and child-friendly. Ned Tijdschr Geneeskd. 2011;155(42):A3489. http://www.ncbi.nlm.nih.gov/pubmed/22027459. Accessed 19 Dec 2016.

  4. Kidd EAM, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res. 2004;83:C35–8.

    Article  PubMed  Google Scholar 

  5. Plotino G, Buono L, Grande NM, Lamorgese V, Somma F. Fracture resistance of endodontically treated molars restored with extensive composite resin restorations. J Prosthet Dent. 2008;99(3):225–32.

    Article  PubMed  Google Scholar 

  6. Soares PV, Santos-Filho PCF, Gomide HA, Araujo CA, Martins LRM, Soares CJ. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part II: strain measurement and stress distribution. J Prosthet Dent. 2008;99(2):114–22.

    Article  PubMed  Google Scholar 

  7. González-López S, De Haro-Gasquet F, Vílchez-Díaz MA, Ceballos L, Bravo M. Effect of restorative procedures and occlusal loading on cuspal deflection. Oper Dent. 2006;31(1):33–8.

    Article  PubMed  Google Scholar 

  8. Pereira JR, McDonald A, Petrie A, Knowles JC. Effect of cavity design on tooth surface strain. J Prosthet Dent. 2013;110(5):369–75. https://doi.org/10.1016/j.prosdent.2013.08.004.

    Article  PubMed  Google Scholar 

  9. Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review. J Endod. 2004;30(5):289–301.

    Article  PubMed  Google Scholar 

  10. Fennis WMM, Kuijs RH, Kreulen CM, Roeters FJM, Creugers NHJ, Burgersdijk RCW. A survey of cusp fractures in a population of general dental practices. Int J Prosthodont;15(6):559–63. http://www.ncbi.nlm.nih.gov/pubmed/12475162. Accessed 22 Dec 2016.

  11. Summit JB. In: Summit JB, Robbins W, Hilton TJ, Schwartz RS, Dos Santos JJ, editors. Fundamentals of operative dentistry. A contemporary approach. Chicago: Quintessence; 2006. p. 612.

    Google Scholar 

  12. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, et al. Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent;28(3):215–35. http://www.ncbi.nlm.nih.gov/pubmed/12760693. Accessed 22 Dec 2016.

  13. Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B, Van Landuyt KL. Is secondary caries with composites a material-based problem? Dent Mater 2015;31(11):e247–77. http://www.ncbi.nlm.nih.gov/pubmed/26410151. Accessed 22 Dec 2016.

  14. Demirci M, Hiller K, Bosl C, Galler K, Schmalz G, Schweikl H. The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives. Dent Mater. 2007;4:362–71.

    Google Scholar 

  15. Petridis HP, Tsiggos N, Michail A, Kafantaris SN, Hatzikyriakos A, Kafantaris NM. Three-dimensional positional changes of teeth adjacent to posterior edentulous spaces in relation to age at time of tooth loss and elapsed time. Eur J Prosthodont Restor Dent 2010;18(2):78–83. http://www.ncbi.nlm.nih.gov/pubmed/20698422. Accessed 22 Dec 2016.

  16. Kuper NK, Montagner AF, Van De Sande FH, Bronkhorst EM, Opdam NJM, Huysmans MCDJNM. Secondary caries development in in situ gaps next to composite and amalgam. Caries Res. 2015;49(5):557–63.

    Article  PubMed  Google Scholar 

  17. Kuper NK, Opdam NJM, Ruben JL, de Soet JJ, Cenci MS, Bronkhorst EM, et al. Gap size and wall lesion development next to composite. J Dent Res 2014;93(7):108–13. http://www.ncbi.nlm.nih.gov/pubmed/24801597.

  18. Kuper NK, van de Sande FH, Opdam NJM, Bronkhorst EM, de Soet JJ, Cenci MS, et al. Restoration materials and secondary caries using an in vitro biofilm model. J Dent Res. 2015;94(1):62–8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4270806&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwendicke F, Diederich C, Paris S. Restoration gaps needed to exceed a threshold size to impede sealed lesion arrest in vitro. J Dent 2016;48:77–80. http://www.ncbi.nlm.nih.gov/pubmed/27026078. Accessed 3 Apr 2017.

  20. Bin-shuwaish MS. Effects and effectiveness of cavity disinfectants in operative dentistry: a literature review. J Contemp Dent Pract. 2016;17(10):867–79.

    Article  PubMed  Google Scholar 

  21. Lima FF, Pascotto RC, Benetti AR. Stepwise excavation in a permanent molar: 17-year follow-up. Oper Dent. 2010;35:482–6.

    Article  PubMed  Google Scholar 

  22. Hayashi M, Fujitani M, Yamaki C, Momoi Y. Ways of enhancing pulp preservation by stepwise excavation—a systematic review. J Dent. 2011;39(2):117–21. https://doi.org/10.1016/j.jdent.2010.10.012.

    Article  Google Scholar 

  23. Bjørndal L, Bjorndal L. In deep cavities stepwise excavation of caries can preserve the pulp. Evid Based Dent. 2011;12(3):68. http://www.ncbi.nlm.nih.gov/pubmed/21979762

    Article  PubMed  Google Scholar 

  24. Schwendicke F, Kern M, Blunck U, Dörfer C, Drenck J, Paris S. Marginal integrity and secondary caries of selectively excavated teeth in vitro. J Dent. 2014;42(10):1261–8. https://doi.org/10.1016/j.jdent.2014.08.002.

    Article  PubMed  Google Scholar 

  25. Innes NPT, Stewart M. The Hall technique, a simplified method for placing stainless steel crowns on primary molars, may be as successful as traditionally placed crowns. J Evid Based Dent Pract. 2015;15(2):70–2. http://www.ncbi.nlm.nih.gov/pubmed/25987388. Accessed 3 Apr 2017.

  26. Montagner AF, Kuper NK, Opdam NJM, Bronkhorst EM, Cenci MS, Huysmans M-CDNJM. Wall-lesion development in gaps: the role of the adhesive bonding material. J Dent. 2015;43(8):1007–12. http://www.ncbi.nlm.nih.gov/pubmed/25917166

    Article  PubMed  Google Scholar 

  27. Dawson VS, Amjad S, Fransson H. Endodontic complications in teeth with vital pulps restored with composite resins: a systematic review. Int Endod J. 2015;48(7):627–38.

    Article  PubMed  Google Scholar 

  28. Kabartai F, Hoffmann T, Hannig C. The physiologic sclerotic dentin: a literature-based hypothesis. Med Hypotheses. 2015;85(6):887–90. https://doi.org/10.1016/j.mehy.2015.09.016.

    Article  PubMed  Google Scholar 

  29. Paddick JS, Brailsford SR, EAM K, Beighton D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl Environ Microbiol. 2005;71(5):2467–72.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pugach MK, Strother J, Darling CL, Fried D, Gansky SA, Marshall SJ, et al. Dentin caries zones: mineral, structure, and properties. J Dent Res. 2009;88(1):71–6. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2759645&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yoshiyama M, Tay FR, Doi J, Nishitani Y, Yamada T, Itou K, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res. 2002;81(8):556–60. http://www.ncbi.nlm.nih.gov/pubmed/12147747. Accessed 24 Dec 2016.

  32. Hevinga MA, Opdam NJ, Frencken JE, Truin GJ, Huysmans MCDNJM. Does incomplete caries removal reduce strength of restored teeth? J Dent Res. 2010;89:1270–5.

    Article  PubMed  Google Scholar 

  33. Zhang Z, Zheng K, Li E, Li W, Li Q, Swain M V. Mechanical benefits of conservative restoration for dental fissure caries. J Mech Behav Biomed Mater. 2016;53:11–20. http://linkinghub.elsevier.com/retrieve/pii/S1751616115002817. Accessed 3 Apr 2017.

  34. Bakhshandeh A, Qvist V, Ekstrand KR. Sealing occlusal caries lesions in adults referred for restorative treatment: 2–3 years of follow-up. Clin Oral Investig. 2012;16(2):521–9. http://www.ncbi.nlm.nih.gov/pubmed/21479565. Accessed 3 Apr 2017.

  35. Opdam NJM, Bronkhorst EM, Loomans BAC, Huysmans MCDNJM. 12-year survival of composite vs. amalgam restorations. J Dent Res. 2010;89(10):1063–7.

    Article  PubMed  Google Scholar 

  36. Ben-Amar A, Cardash HS, Judes H. The sealing of the tooth/amalgam interface by corrosion products. J Oral Rehabil. 1995;22(2):101–4. http://www.ncbi.nlm.nih.gov/pubmed/7722740. Accessed 3 Apr 2017.

  37. United Nations Environment (UNEP). Minimata convention on mercury [Internet]. 2013. www.mercuryconvention.org.

  38. Maltz M, Jardim JJ, Mestrinho HD, Yamaguti PM, Podestá K, Moura MS, et al. Partial removal of carious dentine: a multicenter randomized controlled trial and 18-month follow-up results. Caries Res. 2013;47(2):103–9.

    Article  PubMed  Google Scholar 

  39. Yoshihara K, Yoshida Y, Hayakawa S, Nagaoka N, Torii Y, Osaka A, et al. Self-etch monomer-calcium salt deposition on dentin. J Dent Res. 2011;90(5):602–6.

    Article  PubMed  Google Scholar 

  40. De Munck J, Mine A, Poitevin A, Van Ende A, Cardoso MV, Van Landuyt KL, et al. Meta-analytical review of parameters involved in dentin bonding. J Dent Res. 2012;91(4):351–7.

    Article  PubMed  Google Scholar 

  41. Van Meerbeek B, Peumans M, Poitevin A, Mine A, Van Ende A, Neves A, et al. Relationship between bond-strength tests and clinical outcomes. Dent Mater. 2010;26(2):100–21.

    Article  Google Scholar 

  42. Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dent Mater. 2013;29(1):59–84. https://doi.org/10.1016/j.dental.2012.07.158.

    Article  PubMed  Google Scholar 

  43. De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K, et al. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res. 2003;82(2):136–40. http://www.ncbi.nlm.nih.gov/pubmed/12562888. Accessed 3 Apr 2017.

  44. Cardoso MV, De Almeida Neves A, Mine A, Coutinho E, Van Landuyt K, De Munck J, et al. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust Dent J. 2011;56(Suppl 1):31–44.

    Article  PubMed  Google Scholar 

  45. Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, et al. Role of dentin MMPs in caries progression and bond stability. J Dent Res. 2015;94(2):241–51. http://jdr.sagepub.com/content/94/2/241.long

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol ILS, Geraldeli S, et al. Strategies to prevent hydrolytic degradation of the hybrid layer—a review. Dent Mater. 2013;29(10):999–1011. https://doi.org/10.1016/j.dental.2013.07.016.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yoshihara K, Yoshida Y, Hayakawa S, Nagaoka N, Irie M, Ogawa T, et al. Nanolayering of phosphoric acid ester monomer on enamel and dentin. Acta Biomater. 2011;7(8):3187–95. http://www.ncbi.nlm.nih.gov/pubmed/21575747. Accessed 24 Dec 2016.

  48. Yoshiyama M, Tay FR, Doi J, Nishitani Y, Yamada T, Itou K, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res. 2002;81(8):556–60.

    Article  PubMed  Google Scholar 

  49. Tjäderhane L. Dentin bonding: can we make it last? Oper Dent. 2015;40(1):4–18. http://www.jopdentonline.org/doi/10.2341/14-095-BL

    Article  PubMed  Google Scholar 

  50. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402–16. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3144137&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schwendicke F, Göstemeyer G, Blunck U, Paris S, Hsu L-Y, Tu Y-K. Directly placed restorative materials. J Dent Res. 2016;95(6):613–22. http://www.ncbi.nlm.nih.gov/pubmed/26912220. Accessed 3 Apr 2017.

  52. Van Ende A, De Munck J, Van Landuyt K, Van Meerbeek B. Effect of bulk-filling on the bonding efficacy in occlusal class I cavities. J Adhes Dent. 2016;18(2):119–24. http://www.ncbi.nlm.nih.gov/pubmed/27042703. Accessed 24 Dec 2016.

  53. Van Ende A, Lise DP, De Munck J, Vanhulst J, Wevers M, Van Meerbeek B. Strain development in bulk-filled cavities of different depths characterized using a non-destructive acoustic emission approach. Dent Mater. 2017;33(4):e165–77. http://www.ncbi.nlm.nih.gov/pubmed/28088459. Accessed 3 Apr 2017.

  54. Li X, Pongprueksa P, Van Meerbeek B, De Munck J. Curing profile of bulk-fill resin-based composites. J Dent. 2015;43(6):664–72. http://www.ncbi.nlm.nih.gov/pubmed/25597265. Accessed 3 Apr 2017.

  55. Van Landuyt KL, Mine A, De Munck J, Jaecques S, Peumans M, Lambrechts P, et al. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J Adhes Dent. 2009;11(3):175–90. http://www.ncbi.nlm.nih.gov/pubmed/19603581. Accessed 3 Apr 2017.

  56. Alex G. Universal adhesives: the next evolution in adhesive dentistry? Compend Contin Educ Dent. 2015;36(1):15–26. http://www.ncbi.nlm.nih.gov/pubmed/25822403. Accessed 3 Apr 2017.

  57. Sidhu S, Nicholson J. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7(3):16. http://www.mdpi.com/2079-4983/7/3/16

    Article  PubMed Central  Google Scholar 

  58. Sidhu SK. Glass-ionomer cement restorative materials: a sticky subject? Aust Dent J. 2011;56(Suppl 1):23–30.

    Article  PubMed  Google Scholar 

  59. Sawalt M, Paris S, Blunck U, Schwendicke F. Fracture resistance and cusp deflection of lined or non-lined composite and glass hybrid restorations over residual demineralized dentin. J Adhes Dent. 2017;19(1):77–82. http://www.ncbi.nlm.nih.gov/pubmed/28195270. Accessed 3 Apr 2017.

  60. Mickenautsch S. High-viscosity glass-ionomer cements for direct posterior tooth restorations in permanent teeth: The evidence in brief. J Dent. 2016;55(September 2014):3–5. http://linkinghub.elsevier.com/retrieve/pii/S0300571216302093

    Google Scholar 

  61. Nedeljkovic I, De Munck J, Slomka V, Van Meerbeek B, Teughels W, Van Landuyt KL. Lack of buffering by composites promotes shift to more cariogenic bacteria. J Dent Res. 2016;95(8):875–81. http://www.ncbi.nlm.nih.gov/pubmed/27146702

    Article  PubMed  Google Scholar 

  62. Fukuda R, Yoshida Y, Nakayama Y, Okazaki M, Inoue S, Sano H, et al. Bonding efficacy of polyalkenoic acids to hydroxyapatite, enamel and dentin. Biomaterials. 2003;24(11):1861–7. http://www.ncbi.nlm.nih.gov/pubmed/12615476. Accessed 24 Dec 2016.

  63. Magne P, Oganesyan T. Premolar cuspal flexure as a function of restorative material and occlusal contact location. Quintessence Int. 2009;40(5):363–70.

    PubMed  Google Scholar 

  64. da Veiga AMA, Cunha AC, Ferreira DMTP, da Silva Fidalgo TK, Chianca TK, Reis KR, et al. Longevity of direct and indirect resin composite restorations in permanent posterior teeth: a systematic review and meta-analysis. J Dent. 2016;54:1–12. https://doi.org/10.1016/j.jdent.2016.08.003.

    Article  PubMed  Google Scholar 

  65. Göstemeyer G, Schwendicke F. Inhibition of hybrid layer degradation by cavity pretreatment: meta- and trial sequential analysis. J Dent. 2016;49:14–21. https://doi.org/10.1016/j.jdent.2016.04.007.

    Article  PubMed  Google Scholar 

  66. van Noort R. Introduction to dental materials. 4th ed. New York: Mosby/Elsevier; 2013. p. 246.

    Google Scholar 

  67. Schwendicke F, Tu Y-K, Hsu L-Y, Göstemeyer G. Antibacterial effects of cavity lining: a systematic review and network meta-analysis. J Dent. 2015;43(11):1298–307. http://linkinghub.elsevier.com/retrieve/pii/S0300571215300087. Accessed 15 Mar 2017.

  68. Bouillaguet S, Wataha JC, Hanks CT, Ciucchi B, Holz J. In vitro cytotoxicity and dentin permeability of HEMA. J Endod. 1996;22(5):244–8.

    Article  PubMed  Google Scholar 

  69. Rathke A, Alt A, Gambin N, Haller B. Dentin diffusion of HEMA released from etch-and-rinse and self-etch bonding systems. Eur J Oral Sci. 2007;115(6):510–6.

    Article  PubMed  Google Scholar 

  70. Nanci A. Ten Cate’s oral histology. 8th ed. Philadelphia: Mosby; 2012. p. 400.

    Google Scholar 

  71. Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31(4):351–70. https://doi.org/10.1016/j.dental.2015.01.004.

    Article  PubMed  Google Scholar 

  72. Li X, Yoshihara K, de Munck J, Cokic S, Pongprueksa P, Putzeys E, et al. Modified tricalcium silicate cement formulations with added zirconium oxide. Clin Oral Investig. 2016;21:1–11. https://doi.org/10.1007/s00784-016-1843-y.

    Google Scholar 

  73. Li Z, Cao L, Fan M, Xu Q. Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: a meta-analysis. J Endod. 2015;41(9):1412–7. http://www.ncbi.nlm.nih.gov/pubmed/25990198. Accessed 15 Mar 2017.

  74. Schwendicke F, Brouwer F, Schwendicke A, Paris S. Different materials for direct pulp capping: systematic review and meta-analysis and trial sequential analysis. Clin Oral Investig. 2016;20(6):1121–32. http://www.ncbi.nlm.nih.gov/pubmed/27037567. Accessed 16 Mar 2017.

  75. Schwendicke F, Meyer-Lueckel H, Schulz M, Dorfer CE, Paris S. Radiopaque tagging masks caries lesions following incomplete excavation in vitro. J Dent Res. 2014;93(6):565–70. http://www.ncbi.nlm.nih.gov/pubmed/24718110. Accessed 3 Apr 2017.

  76. Schwendicke F, Frencken JE, Bjørndal L, Maltz M, Manton DJ, Ricketts D, et al. Managing carious lesions: consensus recommendations on carious tissue removal. Adv Dent Res. 2016;28(2):58–67.

    Article  PubMed  Google Scholar 

  77. Umwali A, Askar H, Paris S, Schwendicke F. Radiographic, antibacterial and bond-strength effects of radiopaque caries tagging. Sci Rep. 2016;6(1):27319. http://www.ncbi.nlm.nih.gov/pubmed/27251174. Accessed 3 Apr 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten van Landuyt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Landuyt, K., Van Meerbeek, B. (2018). Restorative Challenges and How to Overcome Them. In: Schwendicke, F. (eds) Management of Deep Carious Lesions. Springer, Cham. https://doi.org/10.1007/978-3-319-61370-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61370-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61369-7

  • Online ISBN: 978-3-319-61370-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics