Skip to main content

Future Perspectives for Dental Composites

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

It has been suggested that soon there will be a day when dental restoratives would be no longer inert materials that merely fill the space left by cavity preparation, but instead, once placed in intimate contact, should stimulate dental tissues regeneration and/or be themselves selfmending. Although this day is yet to come, an overview of this book chapter provides the rationale and context to infer that such expectation may not be so far from fulfillment. The literature is plentiful of reports recounting new approaches to the manufacturing of biocompatible and structurally sufficient materials that can be applied to replace or repair dental, oral, and craniofacial tissues, focusing on clinical efficiency and usefulness. In this way, the main challenge of dental material industry is to obtain bioactive regenerative materials to recreate the entire tooth structures in a realistic scale. The intention of the present chapter is not to exhaust the subject but rather provide some brushstrokes about the state of the art and future perspectives of bioactive restorative materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ferracane JL, Giannobile WV. Special issue on novel materials. J Dent Res. 2014;93:1185–336.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. J Endod. 2016;42:47–56.

    Article  PubMed  Google Scholar 

  3. Tersariol IL, Geraldeli S, Minciotti CL, Nascimento FD, Paakkonen V, Martins MT, et al. Cysteine cathepsins in human dentin-pulp complex. J Endod. 2010;36:475–81.

    Article  PubMed  Google Scholar 

  4. Boukpessi T, Menashi S, Camoin L, Tencate JM, Goldberg M, Chaussain-Miller C. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials. 2008;29:4367–73.

    Article  PubMed  Google Scholar 

  5. Sulkala M, Tervahartiala T, Sorsa T, Larmas M, Salo T, Tjaderhane L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol. 2007;52:121–7.

    Article  PubMed  Google Scholar 

  6. Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med. 2001;12:425–37.

    Article  PubMed  Google Scholar 

  7. Thomadakis G, Ramoshebi LN, Crooks J, Rueger DC, Ripamonti U. Immunolocalization of bone morphogenetic protein-2 and -3 and osteogenic protein-1 during murine tooth root morphogenesis and in other craniofacial structures. Eur J Oral Sci. 1999;107:368–77.

    Article  PubMed  Google Scholar 

  8. Helder MN, Karg H, Bervoets TJ, Vukicevic S, Burger EH, D’Souza RN, et al. Bone morphogenetic protein-7 (osteogenic protein-1, OP-1) and tooth development. J Dent Res. 1998;77:545–54.

    Article  PubMed  Google Scholar 

  9. Tjaderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res. 1998;77:1622–9.

    Article  PubMed  Google Scholar 

  10. Finkelman RD, Mohan S, Jennings JC, Taylor AK, Jepsen S, Baylink DJ. Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin. J Bone Miner Res. 1990;5:717–23.

    Article  PubMed  Google Scholar 

  11. Smith JG, Smith AJ, Shelton RM, Cooper PR. Dental pulp cell behavior in biomimetic environments. J Dent Res. 2015;94:1552–9.

    Article  PubMed  Google Scholar 

  12. Booth C, Potten CS. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest. 2000;105:1493–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen XD. Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal stem cells. Birth Defects Res C Embryo Today. 2010;90:45–54.

    Article  PubMed  Google Scholar 

  14. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33:377–90.

    Article  PubMed  Google Scholar 

  15. Simon S, Smith AJ, Berdal A, Lumley PJ, Cooper PR. The MAP kinase pathway is involved in odontoblast stimulation via p38 phosphorylation. J Endod. 2010;36:256–9.

    Article  PubMed  Google Scholar 

  16. Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp therapy. J Dent. 2000;28:77–92.

    Article  PubMed  Google Scholar 

  17. Albuquerque MT, Valera MC, Nakashima M, Nor JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res. 2014;93:1222–31.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferracane JL, Giannobile WV. Novel biomaterials and technologies for the dental, oral, and craniofacial structures. J Dent Res. 2014;93:1185–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Galler KM, Buchalla W, Hiller KA, Federlin M, Eidt A, Schiefersteiner M, et al. Influence of root canal disinfectants on growth factor release from dentin. J Endod. 2015;41:363–8.

    Article  PubMed  Google Scholar 

  20. Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent. 2007;35:636–42.

    Article  PubMed  Google Scholar 

  21. Galler KM, D’Souza RN, Federlin M, Cavender AC, Hartgerink JD, Hecker S, et al. Dentin conditioning codetermines cell fate in regenerative endodontics. J Endod. 2011;37:1536–41.

    Article  PubMed  Google Scholar 

  22. Martin DE, De Almeida JF, Henry MA, Khaing ZZ, Schmidt CE, Teixeira FB, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40:51–5.

    Article  PubMed  Google Scholar 

  23. Trevino EG, Patwardhan AN, Henry MA, Perry G, Dybdal-Hargreaves N, Hargreaves KM, et al. Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. J Endod. 2011;37:1109–15.

    Article  PubMed  Google Scholar 

  24. Duncan HF, Smith AJ, Fleming GJ, Cooper PR. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells. Exp Cell Res. 2013;319:1534–43.

    Article  PubMed  Google Scholar 

  25. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components. Biomaterials. 2006;27:2865–73.

    Article  PubMed  Google Scholar 

  26. Murray PE, Smith AJ, Garcia-Godoy F, Lumley PJ. Comparison of operative procedure variables on pulpal viability in an ex vivo model. Int Endod J. 2008;41:389–400.

    Article  PubMed  Google Scholar 

  27. Sonarkar S, Purba R. Bioactive materials in conservative dentistry. Int J Contemp Dent Med Rev. 2015;2015:1–4.

    Google Scholar 

  28. Chen L, Shen H, Suh BI. Bioactive dental restorative materials: a review. Am J Dent. 2013;26:219–27.

    PubMed  Google Scholar 

  29. Mehta AB, Kumari V, Jose R, Izadikhah V. Remineralization potential of bioactive glass and casein phosphopeptide-amorphous calcium phosphate on initial carious lesion: an in-vitro pH-cycling study. J Conserv Dent. 2014;17:3–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sabbagh J, Ryelandt L, Bacherius L, Biebuyck JJ, Vreven J, Lambrechts P, et al. Characterization of the inorganic fraction of resin composites. J Oral Rehabil. 2004;31:1090–101.

    Article  PubMed  Google Scholar 

  31. Rath SN, Brandl A, Hiller D, Hoppe A, Gbureck U, Horch RE, et al. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS One. 2014;9:e113319.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review – Part III: clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36:400–13.

    Article  PubMed  Google Scholar 

  33. Asgary S, Eghbal MJ, Parirokh M, Torabzadeh H. Sealing ability of three commercial mineral trioxide aggregates and an experimental root-end filling material. Iran Endod J. 2006;1:101–5.

    PubMed  PubMed Central  Google Scholar 

  34. Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J, Kheirieh S, Brink F. Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. J Endod. 2009;35:243–50.

    Article  PubMed  Google Scholar 

  35. Asgary S, Eghbal MJ, Parirokh M, Ghoddusi J. Effect of two storage solutions on surface topography of two root-end fillings. Aust Endod J. 2009;35:147–52.

    Article  PubMed  Google Scholar 

  36. Amini Ghazvini S, Abdo Tabrizi M, Kobarfard F, Akbarzadeh Baghban A, Asgary S. Ion release and pH of a new endodontic cement, MTA and Portland cement. Iran Endod J. 2009;4:74–8.

    PubMed  PubMed Central  Google Scholar 

  37. Qureshi A, E S, Nandakumar, Pratapkumar, Sambashivarao. Recent advances in pulp capping materials: an overview. J Clin Diagn Res. 2014;8:316–21.

    PubMed  PubMed Central  Google Scholar 

  38. Chatzistavrou X, Fenno JC, Faulk D, Badylak S, Kasuga T, Boccaccini AR, et al. Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater. 2014;10:3723–32.

    Article  PubMed  Google Scholar 

  39. Powers JM, Wataha JC. Cements. Dental materials properties and manipulation. 10th ed. St. Louis, Missouri: Elsevier; 2014. p. 248.

    Google Scholar 

  40. Sakagushi RL, Powers JM. Craig’s restorative dental materials. 13th ed. St. Louis, Missouri: Elsevier; 2012.

    Google Scholar 

  41. Sun Y, Chen WL, Lin SJ, Jee SH, Chen YF, Lin LC, et al. Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging. Biophys J. 2006;91:2620–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bowes JH. The swelling of collagen in alkaline solutions; swelling in solutions of bivalent bases. Biochem J. 1950;46:530–2.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kemp GD, Tristram GR. The preparation of an alkali-soluble collagen from demineralized bone. Biochem J. 1971;124:915–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dental Traumatol. 2002;18:134–7.

    Article  Google Scholar 

  45. Mount GJ. Color atlas of glass Ionomer cement. 2nd ed. Martin Dunitz: London, UK; 2002.

    Google Scholar 

  46. ISO. Dentistry - water-based cements Part 1 Powder/liquid acid-base cements. In: IOf S, editor. ISO 9917–1: Dental water based cements. Switzerland: International Organization for Standardization; 2007.

    Google Scholar 

  47. McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int. 1994;25:587–9.

    PubMed  Google Scholar 

  48. Sennou HE, Lebugle AA, Gregoire GL. X-ray photoelectron spectroscopy study of the dentin-glass ionomer cement interface. Dent Mater. 1999;15:229–37.

    Article  PubMed  Google Scholar 

  49. Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater. 2014;30:50–61.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yiu CK, Tay FR, King NM, Pashley DH, Sidhu SK, Neo JC, et al. Interaction of glass-ionomer cements with moist dentin. J Dent Res. 2004;83:283–9.

    Article  PubMed  Google Scholar 

  51. Nicholson JW, Czarnecka B, Limanowska-Shaw H. The long-term interaction of dental cements with lactic acid solutions. J Mater Sci Mater Med. 1999;10:449–52.

    Article  PubMed  Google Scholar 

  52. Okada K, Tosaki S, Hirota K, Hume WR. Surface hardness change of restorative filling materials stored in saliva. Dent Mater. 2001;17:34–9.

    Article  PubMed  Google Scholar 

  53. de Amorim RG, Leal SC, Frencken JE. Survival of atraumatic restorative treatment (ART) sealants and restorations: a meta-analysis. Clin Oral Investig. 2012;16:429–41.

    Article  PubMed  Google Scholar 

  54. Mijan MC, de Amorim RG, Mulder J, Frencken JE, Leal SC. Exfoliation rates of primary molars submitted to three treatment protocols after 3.5 years. Community Dent Oral Epidemiol. 2015;43:232–9.

    Article  PubMed  Google Scholar 

  55. Abdalla AI, Alhadainy HA, Garcia-Godoy F. Clinical evaluation of glass ionomers and compomers in Class V carious lesions. Am J Dent. 1997;10:18–20.

    PubMed  Google Scholar 

  56. van Dijken JW. 3-year clinical evaluation of a compomer, a resin-modified glass ionomer and a resin composite in Class III restorations. Am J Dent. 1996;9:195–8.

    PubMed  Google Scholar 

  57. Leevailoj C, Platt JA, Cochran MA, Moore BK. In vitro study of fracture incidence and compressive fracture load of all-ceramic crowns cemented with resin-modified glass ionomer and other luting agents. J Prosthet Dent. 1998;80:699–707.

    Article  PubMed  Google Scholar 

  58. Pascotto RC, Navarro MF, Capelozza Filho L, Cury JA. In vivo effect of a resin-modified glass ionomer cement on enamel demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop. 2004;125:36–41.

    Article  PubMed  Google Scholar 

  59. Peumans M, De Munck J, Mine A, Van Meerbeek B. Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent Mater. 2014;30:1089–103.

    Article  PubMed  Google Scholar 

  60. Terata R, Nakashima K, Kubota M. Effect of temporary materials on bond strength of resin-modified glass-ionomer luting cements to teeth. Am J Dent. 2000;13:209–11.

    PubMed  Google Scholar 

  61. McLean JW, Powis DR, Prosser HJ, Wilson AD. The use of glass-ionomer cements in bonding composite resins to dentine. Br Dent J. 1985;158:410–4.

    Article  PubMed  Google Scholar 

  62. Andersson-Wenckert IE, van Dijken JW, Kieri C. Durability of extensive Class II open-sandwich restorations with a resin-modified glass ionomer cement after 6 years. Am J Dent. 2004;17:43–50.

    PubMed  Google Scholar 

  63. Frencken JE, Makoni F, Sithole WD. ART restorations and glass ionomer sealants in Zimbabwe: survival after 3 years. Community Dent Oral Epidemiol. 1998;26:372–81.

    Article  PubMed  Google Scholar 

  64. Zanata RL, Fagundes TC, Freitas MC, Lauris JR, Navarro MF. Ten-year survival of ART restorations in permanent posterior teeth. Clin Oral Investig. 2011;15:265–71.

    Article  PubMed  Google Scholar 

  65. da Mata C, Allen PF, McKenna G, Cronin M, O’Mahony D, Woods N. Two-year survival of ART restorations placed in elderly patients: a randomised controlled clinical trial. J Dent. 2015;43:405–11.

    Article  PubMed  Google Scholar 

  66. De Munck J, Van Landuyt K, Peumans M, Poitevin A, Lambrechts P, Braem M, et al. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res. 2005;84:118–32.

    Article  PubMed  Google Scholar 

  67. Peutzfeldt A, Garcia-Godoy F, Asmussen E. Surface hardness and wear of glass ionomers and compomers. Am J Dent. 1997;10:15–7.

    PubMed  Google Scholar 

  68. Zafar MS, Ahmed N. Effects of wear on hardness and stiffness of restorative dental materials. Life Sci J. 2014;11:11–8.

    Google Scholar 

  69. Um CM, Oilo G. The effect of early water contact on glass-ionomer cements. Quintessence Int. 1992;23:209–14.

    PubMed  Google Scholar 

  70. Pegoraro TA, da Silva NR, Carvalho RM. Cements for use in esthetic dentistry. Dent Clin N Am. 2007;51:453–71.

    Article  PubMed  Google Scholar 

  71. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16:129–38.

    Article  PubMed  Google Scholar 

  72. Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem. 2011;21:1319–28.

    Article  Google Scholar 

  73. Yli-Urpo H, Vallittu PK, Narhi TO, Forsback AP, Vakiparta M. Release of silica, calcium, phosphorus, and fluoride from glass ionomer cement containing bioactive glass. J Biomater Appl. 2004;19:5–20.

    Article  PubMed  Google Scholar 

  74. Palmer G, Jones FH, Billington RW, Pearson GJ. Chlorhexidine release from an experimental glass ionomer cement. Biomaterials. 2004;25:5423–31.

    Article  PubMed  Google Scholar 

  75. Chen S, Gururaj S, Xia W, Engqvist H. Synthesis of Ag doped calcium phosphate particles and their antibacterial effect as additives in dental glass ionomer cements. J Mater Sci Mater Med. 2016;27:172.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Felemban NH, Ebrahim MI. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement. Eur J Dent. 2016;10:225–9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pinheiro SL, Azenha GR, Milito FDE, Democh YM. Antimicrobial capacity of casein phosphopeptide/amorphous calcium phosphate and enzymes in glass ionomer cement in dentin carious lesions. Acta Stomatol Croat. 2015;49:104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zainuddin N, Karpukhina N, Law RV, Hill RG. Characterisation of a remineralising Glass Carbomer(R) ionomer cement by MAS-NMR spectroscopy. Dent Mater. 2012;28:1051–8.

    Article  PubMed  Google Scholar 

  79. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials – fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23:343–62.

    Article  PubMed  Google Scholar 

  80. Xu X, Burgess JO. Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials. 2003;24:2451–61.

    Article  PubMed  Google Scholar 

  81. Dijkman GE, de Vries J, Lodding A, Arends J. Long-term fluoride release of visible light-activated composites in vitro: a correlation with in situ demineralisation data. Caries Res. 1993;27:117–23.

    Article  PubMed  Google Scholar 

  82. Xu HH, Eichmiller FC, Antonucci JM, Flaim GM. Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release. Oper Dent. 2000;25:90–7.

    PubMed  Google Scholar 

  83. Xu HH, Eichmiller FC, Antonucci JM, Schumacher GE, Ives LK. Dental resin composites containing ceramic whiskers and precured glass ionomer particles. Dent Mater. 2000;16:356–63.

    Article  PubMed  Google Scholar 

  84. Arends J, Dijkman GE, Dijkman AG. Review of fluoride release and secondary caries reduction by fluoridating composites. Adv Dent Res. 1995;9:367–76.

    Article  Google Scholar 

  85. Asmussen E, Peutzfeldt A. Long-term fluoride release from a glass ionomer cement, a compomer, and from experimental resin composites. Acta Odontol Scand. 2002;60:93–7.

    Article  PubMed  Google Scholar 

  86. Karantakis P, Helvatjoglou-Antoniades M, Theodoridou-Pahini S, Papadogiannis Y. Fluoride release from three glass ionomers, a compomer, and a composite resin in water, artificial saliva, and lactic acid. Oper Dent. 2000;25:20–5.

    Google Scholar 

  87. Attar N, Onen A. Fluoride release and uptake characteristics of aesthetic restorative materials. J Oral Rehabil. 2002;29:791–8.

    Article  PubMed  Google Scholar 

  88. Vermeersch G, Leloup G, Vreven J. Fluoride release from glass-ionomer cements, compomers and resin composites. J Oral Rehabil. 2001;28:26–32.

    Article  PubMed  Google Scholar 

  89. Preston AJ, Mair LH, Agalamanyi EA, Higham SM. Fluoride release from aesthetic dental materials. J Oral Rehabil. 1999;26:123–9.

    Article  PubMed  Google Scholar 

  90. Carvalho AS, Cury JA. Fluoride release from some dental materials in different solutions. Oper Dent. 1999;24:14–9.

    PubMed  Google Scholar 

  91. Preston AJ, Agalamanyi EA, Higham SM, Mair LH. The recharge of esthetic dental restorative materials with fluoride in vitro-two years’ results. Dent Mater. 2003;19:32–7.

    Article  PubMed  Google Scholar 

  92. Exterkate RA, Damen JJ, ten Cate JM. Effect of fluoride-releasing filling materials on underlying dentinal lesions in vitro. Caries Res. 2005;39:509–13.

    Article  PubMed  Google Scholar 

  93. Xu HH, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC, et al. Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J Dent Res. 2010;89:19–28.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Xu HH, Moreau JL, Sun L, Chow LC. Novel CaF(2) nanocomposite with high strength and fluoride ion release. J Dent Res. 2010;89:739–45.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wang L, Nancollas GH. Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls. Dalton Trans. 2009:21:2665–72.

    Google Scholar 

  96. Dorozhkin S. Calcium orthophosphates in nature, biology and medicine. Materials. 2009;2:399–498.

    Article  PubMed Central  Google Scholar 

  97. Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci. 2009;44:2343–87.

    Article  Google Scholar 

  98. Hench LL. Bioceramics and the origin of life. J Biomed Mater Res. 1989;23:685–703.

    Article  PubMed  Google Scholar 

  99. Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater. 2010;6:4457–75.

    Article  PubMed  Google Scholar 

  100. Eanes ED. Amorphous calcium phosphate. Monogr Oral Sci. 2001;18:130–47.

    Article  PubMed  Google Scholar 

  101. Bienek DR, Tutak W, Skrtic D. Bioactive polymeric materials for tissue repair. J Funct Biomater. 2017;8:4.

    Google Scholar 

  102. Alania Y, Chiari MD, Rodrigues MC, Arana-Chavez VE, Bressiani AH, Vichi FM, et al. Bioactive composites containing TEGDMA-functionalized calcium phosphate particles: degree of conversion, fracture strength and ion release evaluation. Dent Mater. 2016;32:e374–e81.

    Article  PubMed  Google Scholar 

  103. Marovic D, Sariri K, Demoli N, Ristic M, Hiller KA, Skrtic D, et al. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness. Croat Med J. 2016;57:465–73.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Skrtic D, Antonucci JM. Bioactive polymeric composites for tooth mineral regeneration: physicochemical and cellular aspects. J Funct Biomater. 2011;2:271–307.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Xie X, Wang L, Xing D, Arola DD, Weir MD, Bai Y, et al. Protein-repellent and antibacterial functions of a calcium phosphate rechargeable nanocomposite. J Dent. 2016;52:15–22.

    Article  PubMed  Google Scholar 

  106. Ferracane JL. Resin composite-state of the art. Dent Mater. 2011;27:29–38.

    Article  PubMed  Google Scholar 

  107. Langhorst SE, O’Donnell JN, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater. 2009;25:884–91.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo H. P. D’Alpino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrilho, M., D’Alpino, P.H.P. (2018). Future Perspectives for Dental Composites. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics