Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Bitumen extraction produces large amounts of oil sands process-affected waters (OSPW) which are stored in vast tailings ponds. OSPW is acutely toxic to many organisms, and this toxicity is largely attributed to the presence of naphthenic acids (NAs). NAs are complex mixtures of organic compounds, including acyclic and cyclic, saturated and aromatic carboxylic acids, which traditionally fit the general formula CnH2n+zO2. Di-, tri-, tetra-, and pentacyclic diamondoid acids as well as structures that contain more than two oxygen atoms (Oxy-NAs) and/or nitrogen and sulfur have also been identified. NAs may originate from either anthropogenic (e.g., tailings ponds) or natural (e.g., Athabasca River sediments) sources. Although many studies have focused on the biodegradation of either model or commercial NAs, many of those NAs found in the environment are recalcitrant to biodegradation. Currently, little is known about the ecology of NA-degrading microorganisms and the range of NAs that they metabolize. Typically, mixed microbial communities from environments that have a history of NA contamination, such as those found in oil sands and OSPW, can degrade NAs, including recalcitrant NAs, more quickly than pure cultures. Indeed, microorganisms capable of effective NA degradation include members of the Proteobacteria, particularly Pseudomonas spp. However, NA structure and composition, as well as environmental factors such as the presence of specific electron acceptors, trace metals, and competition for substrates from non-NA-degrading microbes, are important drivers in shaping NA-degrading microbial communities. In order to elucidate the mechanisms of NA degradation for future remediation strategies, it is important to better understand the ecology of NA degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AEO:

Acid-extractable organics

AS:

Activated sludge

BTEX:

Benzene, toluene, ethylbenzene and xylene

CHAA:

Cyclohexane acetic acid

CHBA:

Cyclohexane butyric acid

CHCA:

Cyclohexane carboxylic acid

CHPA:

Cyclohexane propionic acid

CHPeA:

Cyclohexane pentanoic acid

DA:

Decanoic acid

DHNA:

Decahydro-2-naphthoic acid

GAC:

Granular activated carbon

H2:

Hydrogen

HA:

Hexanoic acid

LC:

Lethal concentration

MCHCA:

Methyl-cyclohexane carboxylic acid

MFT:

Mature fine tailings

NA:

Naphthenic acids

OSPW:

Oil sands process-affected waters (or oil sands process waters)

Oxy-NAs:

Oxy-naphthenic acids

PAHs:

Polycyclic aromatic hydrocarbons

SBR:

Sequencing batch reactor

SRB:

Sulfate-reducing bacteria

References

  • Abu Laban N, Dao A, Semple K, Foght JM (2014) Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 12:4898–4815

    Google Scholar 

  • Abu Laban N, Dao A, Foght J (2015) DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiol Ecol 91:1–12

    Google Scholar 

  • Aktas Ö, Çeçan F (2007) Bioregeneration of activated carbon: a review. Int Biodeterior Biodegrad 59:257–272

    Article  CAS  Google Scholar 

  • Allard A-S, Neilson AH (1997) Bioremediation of organic waste sites: a critical review of microbiological aspects. Int Biodeterior Biodegrad 39:253–285

    Article  CAS  Google Scholar 

  • An D, Brown D, Chatterjee I, Dong X, Ramos-Padron E, Wilson S et al (2013) Microbial community and potential functional gene diversity involved in anaerobic hydrocarbon degradation and methanogenesis in an oil sands tailings pond 1. Genome 56:612–618

    Article  CAS  PubMed  Google Scholar 

  • Barrow MP, Headley JV, Peru KM, Derrick PJ (2009) Data visualization for the characterization of naphthenic acids within petroleum samples. Energy Fuel 23:2592–2599

    Article  CAS  Google Scholar 

  • Bataineh M, Scott AC, Fedorak PM, Martin JW (2006) Capillary HPLC/QTOFMS for characterizing complex naphthenic acid mixtures and their microbial transformation. Anal Chem 78:8354–8361

    Article  CAS  PubMed  Google Scholar 

  • Bauer AE (2015) Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy. Environ Toxicol Chem 34:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Baugh TD, Wolf NO, Mediaas H, Vindstad JE, Grande K (2004) Characterization of a calcium naphthenate deposit- the ARN acid discovery. Prepr Am Chem Soc Div Petrol Chem 49:274

    CAS  Google Scholar 

  • Beddow J, Johnson RJ, Lawson T, Breckels MN, Webster RJ, Smith BE, Rowland SJ, Whitby C (2016) The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris. Chemosphere 145:416–423

    Article  CAS  PubMed  Google Scholar 

  • Bordenave S, Kostenko M, Dutkoski M, Grigoryan A, Martinuzzi RJ, Voordouw G (2010) Relation between the activity of anaerobic microbial populations in oil sands tailings ponds and sedimentation of tailings. Chemosphere 81:663–668

    Article  CAS  PubMed  Google Scholar 

  • Brient JA, Wessner PJ, Doly MN (1995) Naphthenic acids. In: Kroschwitz JI (ed) Encyclopedia of chemical technology, vol 16, 4th edn. Wiley, New York, pp 1017–1029

    Google Scholar 

  • Canadian Oil Sands Network for Research and Development (CONRAD) (1998) Naphthenic acids background information: discussion report. Canadian Oil Sands Network for Research and Development (CONRAD) Environmental Aquatics Technical Advisory Group (CEATAG). Alta, Edmonton

    Google Scholar 

  • Chakraborty R, Wu CH, Hazen TC (2012) Systems biology approach to bioremediation. Curr Opin Biotechnol 23:483–490

    Article  CAS  PubMed  Google Scholar 

  • Chalaturnyk RJ, Scott JD, Ozum B (2002) Management of oil sands tailings. Pet Sci Technol 20:1025–1046

    Article  CAS  Google Scholar 

  • Chambers PA, Culp JM, Glozier NE, Cash KJ, Wrona FJ, Noton L (2006) Northern rivers ecosystem initiative: nutrients and dissolved oxygen-issues and impacts. Environ Monit Assess 113:117–141

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Hwang G, El-Din MG, Liu Y (2014) Effect of reactor configuration and microbial characteristics on biofilm reactors for oil sands process-affected water treatment. Int J Biodeterior Biodegrad 89:74–81

    Article  CAS  Google Scholar 

  • Clemente JS, Fedorak PM (2005) A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids. Chemosphere 60:585–600

    Article  CAS  PubMed  Google Scholar 

  • Clemente JS, MacKinnon MD, Fedorak PM (2004) Aerobic biodegradation of two commercial naphthenic acid preparations. Environ Sci Technol 38:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Clothier LN, Gieg LM (2016) Anaerobic biodegradation of surrogate naphthenic acids. Water Res 90:156–166

    Article  CAS  PubMed  Google Scholar 

  • Combarros RG, Rosas I, Lavin AG, Rendueles M, Diaz M (2014) Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water Air Soil Pollut 225:1858

    Article  CAS  Google Scholar 

  • Del Rio LF, Hadwin AKM, Pinto LJ, MacKinnon MD, Moore MM (2006) Degradation of naphthenic acids by sediment microorganisms. J Appl Microbiol 101:1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Demeter MA, Lemire J, Yue G, Ceri H, Turner RJ (2015a) Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation. Front Microbiol 6:936

    Article  PubMed  PubMed Central  Google Scholar 

  • Demeter MA, Lemire J, Golby S, Schwering M, Ceri H, Turner RJ (2015b) Cultivation of environmental bacterial communities as multispecies biofilms. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer protocols handbooks. Springer, Berlin. https://doi.org/10.1007/8623_2015_82

    Chapter  Google Scholar 

  • Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fall RR, Brown JL, Schaeffer TL (1979) Enzyme recruitment allows the biodegradation of recalcitrant branched hydrocarbons by Pseudomonas citronellolis. Appl Environ Microbiol 38:715–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorak PM, Coy DL, Dudas MJ, Simpson MJ, Renneberg AJ (2003) Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. J Environ Eng Sci 2:199–211

    Article  CAS  Google Scholar 

  • Foght JM (2015) Microbial metagenomics of oil sands tailings ponds: small bugs, big data. Genome 58:507–510

    Article  PubMed  Google Scholar 

  • Foght JM, Fedorak PM, Westlake DWS (1985) Microbial content and metabolic activities in Syncrude tailings pond. AOSTRA J Res 1:139–146

    CAS  Google Scholar 

  • Foght JM, Gieg LM, Siddique T (2017) The microbiology of oil sands tailings: past, present, future. FEMS Microbiol Ecol 93(5):fix034

    Article  CAS  Google Scholar 

  • Folwell BD, McGenity TJ, Price A, Johnson RJ, Whitby C (2015) Exploring the capacity for anaerobic biodegradation of polycyclic aromatic hydrocarbons and naphthenic acids by microbes from oil sands process affected waters. Int J Biodeterior Biodegrad 108:214–221

    Article  CAS  Google Scholar 

  • Folwell BD, McGenity TJ, Whitby C (2016) Characterisation of biofilm and planktonic bacterial and fungal communities transforming high molecular weight polyaromatic hydrocarbons. Appl Environ Microbiol 82:2288–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank RA, Kavanagh R, Burnison BK, Arsenault G, Headley JV, Peru KM, Solomon KR (2008) Toxicity assessment of generated fractions from an extracted naphthenic acid mixture. Chemosphere 72:1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Frank RA, Fischer K, Kavanagh R, Burnison BK, Arsenault G, Headley JV, Peru KM, Van Der Kraak G, Solomon KR (2009) Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environ Sci Technol 43:266–271

    Article  CAS  PubMed  Google Scholar 

  • Frankel ML, Bhuiyan TI, Veksha A, Demeter MA, Layzell DB, Helleur RJ, Hill JM, Turner RJ (2016) Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour Technol 216:352–361

    Article  CAS  PubMed  Google Scholar 

  • Frascari D, Bucchi G, Doria F, Rosato A, Tavanaie N, Salviulo R, Ciavarelli R, Pinelli D, Fraraccio S, Zanaroli G, Fava F (2014) Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents. Biodegradation 25:337–350

    Article  CAS  PubMed  Google Scholar 

  • Golby S, Ceri H, Gieg L, Chatterjee I, Marques LLR, Turner RJ (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol Ecol 79:240–250

    Article  CAS  PubMed  Google Scholar 

  • Grewer DM, Young RF, Whittal RM, Fedorak PM (2010) Naphthenic acids and other acid-extractables in water samples from Alberta: what is being measured? Sci Total Environ 408:5997–6010

    Article  CAS  PubMed  Google Scholar 

  • Gunawan Y, Nemati M, Dalai A (2014) Biodegradation of a surrogate naphthenic acid under denitrifying conditions. Water Res 51:11–24

    Article  CAS  PubMed  Google Scholar 

  • Hadwin AKM, Del Rio LF, Pinto LJ, Painter M, Routledge R, Moore M (2006) Microbial communities in wetlands of the Athabasca oil sands: genetic and metabolic characterization. FEMS Microbiol Ecol 55:68–78

    Article  CAS  PubMed  Google Scholar 

  • Han X, Scott AC, Fedorak PM, Batianeh M, Martin JW (2008) Influence of molecular structure on the biodegradability of naphthenic acids. Environ Sci Technol 42:1290–1295

    Article  CAS  PubMed  Google Scholar 

  • Headley JV, McMartin DW (2004) A review of the occurrence and fate of naphthenic acids in aquatic environments. J Environ Sci Health A 39:1989–2010

    Article  CAS  Google Scholar 

  • Headley JV, Conly M, Dickson LC, Akve C, Peru KM (2000) Characterization of natural hydrocarbon release from oil sands deposits in tributaries of the Athabasca River Basin, Canada. Can Tech Rep Fish Aquat Sci 2331:89–90

    Google Scholar 

  • Headley JV, Peru KM, McMartin DW, Winkler M (2002a) Determination of dissolved naphthenic acids in natural waters by using negative-ion electrospray mass spectrometry. J AOAC Int 85:182–187

    CAS  PubMed  Google Scholar 

  • Headley JV, Tanapat S, Putz G, Peru KM (2002b) Biodegradation kinetics of geometric isomers of model naphthenic acids in Athabasca River water. Can Water Res J 27:25–42

    Article  Google Scholar 

  • Headley J, Peru K, Adenugba A, Du JL, McMartin DW (2010) Dissipation of naphthenic acids mixtures by lake biofilms. J Environ Sci Health Part A 45:1027–1036

    Article  CAS  Google Scholar 

  • Headley JV, Peru KM, Barrow MP (2016) Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil - a review. Mass Spectrom Rev 35:311–328

    Article  CAS  PubMed  Google Scholar 

  • Herman DC, Fedorak PM, Costerton JW (1993) Biodegradation of cycloalkane carboxylic acids in oil sand tailings. Can J Microbiol 39:576–580

    Article  CAS  PubMed  Google Scholar 

  • Herman DC, Fedorak PM, MacKinnon MD, Costerton JW (1994) Biodegradation of naphthenic acids by microbial populations indigenous to oil sands tailings. Can J Microbiol 40:467–477

    Article  CAS  PubMed  Google Scholar 

  • Holowenko FM, MacKinnon MD, Fedorak PM (2000) Methanogens and sulfate-reducing bacteria in oil sands fine tailings wastes. Can J Microbiol 46:927–937

    Article  CAS  PubMed  Google Scholar 

  • Holowenko FM, MacKinnon MD, Fedorak PM (2002) Characterization of naphthenic acids in oil sands wastewaters by gas chromatography-mass spectrometry. Water Res 36:2843–2855

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Nemati M, Hill G, Headley J (2012) Batch and continuous biodegradation of three model naphthenic acids in a circulating packed-bed bioreactor. J Hazard Mater 201–202:132–140

    Article  PubMed  CAS  Google Scholar 

  • Islam MS, Dong T, Sheng Z, Zhang Y, Liu Y, Gamal El-Din M (2014a) Microbial community structure and operational performance of a fluidized bed biofilm reactor treating oil sands process-affected water. Int J Biodeterior Biodegrad 91:111–118

    Article  CAS  Google Scholar 

  • Islam MS, Dong T, McPhedran KN, Sheng Z, Zhang Y, Liu Y, Gamal El-Din M (2014b) Impact of ozonation pre-treatment of oil sands process affected water on the operational performance of a GAC-fluidized bed biofilm reactor. Biodegradation 25:811–823

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Dong T, Zhang Y, McPhedran KN, Liu Y, Gamal El-Din M (2015) Next generation pyrosequencing of microbial biofilm communities on granular activated carbon in treatment of oil sands process affected water. Appl Environ Microbiol 81:4037–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson R, Smith BE, Sutton P, McGenity TJ, Rowland SJ, Whitby C (2011) Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching. ISME J 5:486–496

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ, West C, Swaih AM, Folwell BD, Smith BE, Rowland SJ, Whitby C (2012) Aerobic biotransformation of alkyl branched aromatic alkanoic naphthenic acids via two different pathways by a new isolate of Mycobacterium. Environ Microbiol 14:872–882

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ, Smith BE, Rowland SJ, Whitby C (2013) Biodegradation of alkyl branched aromatic alkanoic naphthenic acids by Pseudomonas putida KT2440. Int J Biodeterior Biodegrad 81:3–8

    Article  CAS  Google Scholar 

  • Jones D, West CE, Scarlett AG, Frank R, Rowland SJ (2012) Isolation and estimation of the ‘aromatic’ naphthenic acid content of an oil sands process-affected water extract. J Chromatogr A 1247:171–175

    Article  CAS  PubMed  Google Scholar 

  • Kelly EN, Short JW, Schindler DW, Hodson PV, Ma M, Kwan AK, Fortin BL (2009) Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries. Proc Natl Acad Sci U S A 106:22346–22351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly EN, Schindler DW, Hodson PV, Short JW, Radmanovich R, Nielsen CC (2010) Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries. Proc Natl Acad Sci U S A 107:16178–16183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurek J, Kirk JL, Muir DCG, Wang X, Evans MS, Smol JP (2013) Legacy of half a century of Athabasca oil sands development recorded by lake ecosystems. Proc Natl Acad Sci U S A 110:1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai JL, Pinto WS, Kiehlmann E, Bendell-Young LI, Moore MM (1996) Factors that affect the degradation of naphthenic acids in oil sands wastewater by indigenous microbial communities. Environ Toxicol Chem 15:1482–1491

    Article  CAS  Google Scholar 

  • Lemire JA, Demeter MA, George I, Ceri H, Turner RJ (2015) A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment. AIMS Bioeng 2:387–403

    Article  CAS  Google Scholar 

  • Lengger S, Scarlett AG, West CE, Frank RA, Hewitt LM, Milestone CB, Rowland SJ (2015) Use of the distributions of adamantane acids to profile short-term temporal and pond-scale spatial variations in the composition of oil sands process-affected waters. Environ Sci: Processes Impacts 17(8):1415

    CAS  Google Scholar 

  • Lutnaes BF, Krane J, Smith BE, Rowland SJ (2007) Structure elucidation of C80, C81 and C82 isoprenoid tetracids responsible for naphthenate deposition in crude oil production. Org Biomol Chem 5:1873–1877

    Article  CAS  PubMed  Google Scholar 

  • Magnusson H, Hanneseth AMD, Sjöblom J (2008) Characterization of C80 naphthenic acid and its calcium naphthenate. J Dispers Sci Technol 29:464–473

    Article  CAS  Google Scholar 

  • Marchal R, Penet S, Solano-Serena F, Vandecasteele JP (2003) Gasoline and diesel oil biodegradation. Oil Gas Sci Technol 58:441–448

    Article  CAS  Google Scholar 

  • McKenzie N, Yue S, Liu X, Ramsay BA, Ramsay JA (2014) Biodegradation of naphthenic acids in oil sands process waters in an immobilized soil/sediment bioreactor. Chemosphere 109:164–172

    Article  CAS  PubMed  Google Scholar 

  • Misiti TM, Tezel U, Tandukar M (2013) Aerobic biotransformation potential of a commercial mixture of naphthenic acids. Water Res 47:5520–5534

    Article  CAS  PubMed  Google Scholar 

  • Misiti TM, Tezel U, Pavlostathis SG (2014) Effect of alkyl side chain location and cyclicity on the aerobic biotransformation of naphthenic acids. Environ Sci Technol 48:7909–7917

    Article  CAS  PubMed  Google Scholar 

  • Mollard FPO, Roy MC, Foote AL (2015) Performance of wetland forbs transplanted into marshes amended with oil sands processed water. Environ Monit Assess 187:125

    Article  PubMed  CAS  Google Scholar 

  • Morii H, Eguchi T, Nishihara M, Kakinuma K, Konig H, Koga Y (1998) A novel ether core lipid with H-shaped C80 isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochim Biophys Acta 1390:339–345

    Article  CAS  PubMed  Google Scholar 

  • Nicolella C, Van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33

    Article  CAS  PubMed  Google Scholar 

  • Paslawski J, Nemati M, Hill G, Headley JV (2009) Biodegradation kinetics of trans-4-methyl-1-cyclohexane carboxylic acid in continuously stirred tank and immobilized cell bioreactors. J Chem Technol Biotechnol 84:992–1000

    Article  CAS  Google Scholar 

  • Penner TJ, Foght JM (2010) Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Can J Microbiol 56:459–470

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Padron E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, Fournier J, Voordouw G, Gieg L (2011) Carbon and sulfur cycling by microbial communities in a gypsum treated oil sands tailings pond. Environ Sci Technol 45:439–446

    Article  CAS  PubMed  Google Scholar 

  • Rho EM, Evans WC (1975) The aerobic metabolism of cyclohexanecarboxylic acid by Acinetobacter anitratum. Biochem J 148:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland SJ, Scarlett AG, Jones D, West CE, Frank RA (2011) Diamonds in the rough: identification of individual naphthenic acids in oil sands process water. Environ Sci Technol 45:3154–3159

    Article  CAS  PubMed  Google Scholar 

  • Scarlett AG, Reinhardy HC, Henry TB, West CE, Frank RA, Hewitt LM, Rowland SJ (2013) Acute toxicity of aromatic and non-aromatic fractions of naphthenic acids extracted from oil sands process-affected water to larval zebrafish. Chemosphere 93:415–420

    Article  CAS  PubMed  Google Scholar 

  • Schramm LL, Stasiuk EN, MacKinnon M (2000) Surfactants in Athabasca oil sands slurry conditioning, flotation recovery, and tailings processes. In: Schramm LL (ed) Surfactants: fundamentals and applications in the petroleum industry. Cambridge University Press, Cambridge, pp 365–430

    Chapter  Google Scholar 

  • Scott AC, MacKinnon MD, Fedorak PM (2005) Naphthenic acids in Athabasca oil sands tailings waters are less biodegradable than commercial naphthenic acids. Environ Sci Technol 39:8388–8394

    Article  CAS  PubMed  Google Scholar 

  • Shuqing Z, Haiping H, Yuming L (2008) Biodegradation and origin of oil sands in the Western Canadian Sedimentary Basin. Pet Sci 5:87–94

    Article  CAS  Google Scholar 

  • Siddique T, Fedorak PM, Foght JM (2006) Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40:5459–5464

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Fedorak PM, MacKinnon MD, Foght JM (2007) Metabolism of BTEX and naphtha compounds to methane in oil sands tailings. Environ Sci Technol 41:2350–2356

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899

    Article  CAS  PubMed  Google Scholar 

  • Siddique T, Kuznetsov P, Kuznetsova A, Li C, Young R, Arocena JM, Foght JM (2014) Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry. Front Microbiol 5:107

    PubMed  PubMed Central  Google Scholar 

  • Siddique T, Stasik S, Mohamad Shahimin MF, Wendt-Potthoff K (2018) Microbial communities in oil sands tailings: their implications in biogeochemical processes and tailings management. In: McGenity TJ (ed) Microbial communities utilizing hydrocarbons and lipids: handbook of hydrocarbon and lipid microbiology, 2nd edn. Springer, Cham

    Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    Article  CAS  PubMed  Google Scholar 

  • Smith BE, Sutton PA, Lewis CA, Dunsmore B, Fowler G, Krane L, Lutnaes BF, Brandal Ø, Sjöblom J, Rowland SJ (2007) Analysis of ‘ARN’ naphthenic acids by high temperature gas chromatography and high performance liquid chromatography. J Sep Sci 30:275–380

    Article  CAS  Google Scholar 

  • Smith BE, Lewis A, Belt S, Whitby C, Rowland SJ (2008) Effects of alkyl chain branching on the biotransformation of naphthenic acids. Environ Sci Technol 42:9323–9328

    Article  CAS  PubMed  Google Scholar 

  • Stasik S, Wendt-Pethoff K (2014) Interaction of microbial sulphate reduction and methanogenesis in oil sands tailings ponds. Chemosphere 103:59–66

    Article  CAS  PubMed  Google Scholar 

  • Stasik S, Loick N, Knöller K, Weisener C, Wendt-Pethoff K (2014) Understanding biogeochemical gradients of sulfur, iron, and carbon in an oil sands tailings pond. Chem Geol 382:44–53

    Article  CAS  Google Scholar 

  • Tan B, Dong X, Sensen CW, Foght JM (2013) Metagenomics analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members. Genome 56:599–611

    Article  CAS  PubMed  Google Scholar 

  • Toor NS, Han XM, Franz E, Mackinnon MD, Martin JW, Liber K (2013) Selective biodegradation of naphthenic acids and probable link between mixture profiles and aquatic toxicity. Environ Toxicol Chem 32:2207–2216

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wan Y, Gao Y, Yang M, Hu J (2013) Determination and characterization of oxy-naphthenic acids in oilfield wastewater. Environ Sci Technol 47:9345–9554

    Google Scholar 

  • West CE, Scarlett AG, Tonkin A, O’Carroll-Fitzpatrick D, Pureveen J, Tegelaar E, Gieleciak R, Hager D, Petersen K, Tollefsen K-E, Rowland SJ (2014) Diaromatic sulphur-containing ‘naphthenic’ acids in process waters. Water Res 51:206–215

    Article  CAS  PubMed  Google Scholar 

  • Whitby C (2010) Naphthenic acid biodegradation. Adv Appl Microbiol 70:93–125

    Article  CAS  PubMed  Google Scholar 

  • Wilde MJ, West CE, Scarlett AG, Jones D, Frank RA, Hewitt LM, Rowland SJ (2015) Bicyclic naphthenic acids in oil sands process water: identification by comprehensive multidimensional gas chromatography-mass spectrometry. J Chromatogr A 1378:74–87

    Article  CAS  PubMed  Google Scholar 

  • Wilson SL, Li C, Ramos-Padron E, Nesbø C, Soh J, Sensen CW, Voordouw G, Foght J, Gieg LM (2016) Oil sands tailings ponds harbour a small core prokaryotic microbiome and diverse accessory communities. J Biotechnol 235:187–196

    Article  CAS  PubMed  Google Scholar 

  • Wong ML, An D, Caffrey SM, Soh J, Dong X, Sensen CW, Oldenburg TBP, Larter SR, Voordouw G (2015) Roles of thermophiles and fungi in bitumen degradation in mostly cold oil sands outcrops. Appl Environ Microbiol 81:6825–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyndham RC, Costerton JW (1981a) Heterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms within the Athabasca oil sands deposit. Appl Environ Microbiol 41:783–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyndham RC, Costerton JW (1981b) In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within Athabasca oil sands deposit. Appl Environ Microbiol 41:791–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Zhang Y, Liu Y (2016) Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane. Water Res 88:1–11

    Article  CAS  PubMed  Google Scholar 

  • Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW (2012) Next generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78:7626–7637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yergeau E, Lawrence JR, Sanschagrin S, Roy JL, Swerhone GDW, Korber DR (2013) Aerobic biofilms grown from Athabasca watershed sediments are inhibited by increasing concentrations of bituminous compounds. Appl Environ Microbiol 79:7398–7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue S, Ramsay BA, Ramsay JA (2015) Biodegradation of naphthenic acid surrogates by axenic cultures. Biodegradation 26:313–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Lisa Gieg, University of Calgary, for her useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Whitby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skeels, K., Whitby, C. (2019). Microbial Ecology of Naphthenic Acid (NA) Degradation. In: McGenity, T. (eds) Microbial Communities Utilizing Hydrocarbons and Lipids: Members, Metagenomics and Ecophysiology . Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-60063-5_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60063-5_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60063-5

  • Online ISBN: 978-3-319-60063-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics