Skip to main content

Private Graph Intersection Protocol

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10343))

Included in the following conference series:

Abstract

A wide range of applications can benefit from storing and managing data as graph structures, and graph theory algorithms can be used to solve various computing problems. In this paper, we propose a secure two-party private graph intersection protocol against semi-honest servers. The protocol allows a server and a client, each holding a private graph, to jointly compute the intersection of their graphs. The protocol utilizes homomorphic encryptions and a private set intersection sub-protocol to prevent information leakage during the process. At the end of the protocol, the server learns the graph intersection, and the client learns the vertex intersection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broder, A., Kumar, R., Maghoul, F., et al.: Graph structure in the web. Comput. Netw. 33(1), 309–320 (2000)

    Article  Google Scholar 

  2. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999). doi:10.1007/3-540-48686-0_1

    Chapter  Google Scholar 

  3. Botafogo, R.A., Shneiderman, B.: Identifying aggregates in hypertext structures. In: Proceedings of the third Annual ACM Conference on Hypertext, pp. 63–74. ACM (1991)

    Google Scholar 

  4. Zhang, B., Li, H., Liu, Y., et al.: Improving web search results using affinity graph. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 504–511. ACM (2005)

    Google Scholar 

  5. Page, L., Brin, S., Motwani, R., et al.: The PageRank citation ranking: Bringing order to the web. Stanford InfoLab (1999)

    Google Scholar 

  6. Kacholia, V., Pandit, S., Chakrabarti, S., et al.: Bidirectional expansion for keyword search on graph databases. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 505–516. VLDB Endowment (2005)

    Google Scholar 

  7. Wang, M., Li, H., Tao, D., et al.: Multimodal graph-based reranking for web image search. IEEE Trans. Image Process. 21(11), 4649–4661 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chakrabarti, S., Van den Berg, M., Dom, B.: Focused crawling: a new approach to topic-specific web resource discovery. Comput. Netw. 31(11), 1623–1640 (1999)

    Article  Google Scholar 

  9. Cothey, V.: Web-crawling reliability. J. Am. Soc. Inform. Sci. Technol. 55(14), 1228–1238 (2004)

    Article  Google Scholar 

  10. Pant, G., Srinivasan, P., Menczer, F.: Crawling the web. In: Web Dynamics, pp. 153–177. Springer, Berlin Heidelberg (2004)

    Google Scholar 

  11. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compression with communities. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 95–106. ACM (2008)

    Google Scholar 

  12. Craven, M., Slattery, S., Nigam, K.: First-order learning for web mining. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 250–255. Springer, Heidelberg (1998). doi:10.1007/BFb0026695

    Chapter  Google Scholar 

  13. Sharma, K., Shrivastava, G., Kumar, V.: Web mining: today and tomorrow. In: 2011 3rd International Conference on Electronics Computer Technology (ICECT), vol. 1, pp. 399–403. IEEE (2011)

    Google Scholar 

  14. Pamnani, R., Web, C.P., Mining, U.: A research area in web mining. In: Proceedings of ISCET, pp. 73–77 (2010)

    Google Scholar 

  15. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of the 18th International Conference on World Wide Web, pp. 721–730. ACM (2009)

    Google Scholar 

  16. Myers, S.A., Sharma, A., Gupta, P., et al.: Information network or social network?: the structure of the twitter follow graph. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 493–498. ACM (2014)

    Google Scholar 

  17. Carletti, V., Foggia, P., Vento, M.: Performance comparison of five exact graph matching algorithms on biological databases. In: Petrosino, A., Maddalena, L., Pala, P. (eds.) ICIAP 2013. LNCS, vol. 8158, pp. 409–417. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41190-8_44

    Chapter  Google Scholar 

  18. Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., et al.: Using graph theory to analyze biological networks. Biodata Mining 4(1), 10 (2011)

    Article  Google Scholar 

  19. Tian, Y., Mceachin, R.C., Santos, C., et al.: SAGA: a subgraph matching tool for biological graphs. Bioinformatics 23(2), 232–239 (2007)

    Article  Google Scholar 

  20. Ahlswede, R., Cai, N., Li, S.Y.R., et al.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. (CSUR) 40(1), 1 (2008)

    Article  Google Scholar 

  22. Malewicz, G., Austern, M.H., Bik, A.J.C., et al.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 135–146. ACM (2010)

    Google Scholar 

  23. Kyrola, A., Blelloch, G.E., GraphChi, G.C.: Large-scale graph computation on just a PC. In: OSDI, vol. 12, pp. 31–46 (2012)

    Google Scholar 

  24. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceedings of 2000 IEEE Symposium on Security and Privacy, S&P 2000, pp. 44–55. IEEE (2000)

    Google Scholar 

  25. Curtmola, R., Garay, J., Kamara, S., et al.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

    Article  Google Scholar 

  26. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 965–976. ACM (2012)

    Google Scholar 

  27. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_20

    Chapter  Google Scholar 

  28. Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15546-8_7

    Chapter  Google Scholar 

  29. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17373-8_33

    Chapter  Google Scholar 

  30. Meng, X., Kamara, S., Nissim, K., et al.: GRECS: graph encryption for approximate shortest distance queries. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 504–517. ACM (2015)

    Google Scholar 

  31. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16

    Google Scholar 

  32. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_1

    Chapter  Google Scholar 

  33. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.1007/11535218_15

    Chapter  Google Scholar 

  34. Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14577-3_13

    Chapter  Google Scholar 

  35. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9_8

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science and Technology Major Project under Grant 2013ZX03002006, in part by the Liaoning Province Science and Technology Projects under Grant 2013217004, in part by the Fundamental Research Funds for the Central Universities under Grant N151704002, in part by the Liaoning Province Doctor Startup Fund under Grant 20141012, in part by the Fundamental Research Funds for the Central Universities under Grant N130317002, in part by the Shenyang Province Science and Technology Projects under Grant F14-231-1-08, and in part by the National Natural Science Foundation of China under Grant 61472184, Grant 61321491, and Grant 61272546.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucai Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhou, F., Xu, Z., Li, Y., Xu, J., Peng, S. (2017). Private Graph Intersection Protocol. In: Pieprzyk, J., Suriadi, S. (eds) Information Security and Privacy. ACISP 2017. Lecture Notes in Computer Science(), vol 10343. Springer, Cham. https://doi.org/10.1007/978-3-319-59870-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59870-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59869-7

  • Online ISBN: 978-3-319-59870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics