Skip to main content

Numerical Yield Design Analysis of High-Rise Reinforced Concrete Walls in Fire Conditions

  • Chapter
  • First Online:
Advances in Direct Methods for Materials and Structures
  • 566 Accesses

Abstract

The present contribution aims at developing a numerical procedure for predicting the failure of high rise reinforced concrete walls subjected to fire loading conditions. The stability of such structures depends, on the one hand, on thermal strains inducing a curved deformed configuration and, on the other hand, on a local degradation of the constitutive material strength properties due to the increase of temperature across the wall thickness. A three step procedure is proposed, in which the yield design (limit analysis) method is applied on two separate levels. First, an up-scaling procedure on the wall unit cell is considered as a way for assessing the generalized strength properties of the curved wall, modelled as a shell, by taking into account reduced strength capacities of the constitutive materials. Secondly, the overall stability of the wall in its fire-induced deformed configuration is assessed using lower and upper bound based on shell finite elements and the previously determined temperature-dependent strength criterion. Second-order cone programming problems are then formulated and solved using state-of-the-art solvers. Different illustrative applications are presented to investigate the sensitivity of the wall stability to geometrical parameters. Finally, the influence of imperfect connections between panels is also considered using a simple joint behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salençon J (2013) Yield design. London ISTE Ltd., Wiley, Hoboken

    Book  MATH  Google Scholar 

  2. Chen WF (2007) Plasticity in reinforced concrete. J. Ross Publishing

    Google Scholar 

  3. Lyamin AV, Sloan SW (2002) Int J Numer Anal Methods Geomech 26(2):181

    Article  Google Scholar 

  4. Milani G, Lourenço P, Tralli A (2006) J Struct Eng 132(10):1650

    Article  Google Scholar 

  5. Nielsen MP, Hoang LC (2016) Limit analysis and concrete plasticity. CRC Press

    Google Scholar 

  6. Andersen KD, Christiansen E, Conn AR, Overton ML (2000) SIAM J Sci Comput 22(1):243

    Article  MathSciNet  Google Scholar 

  7. Franssen JM, Dotreppe JC (2003) Fire Technol 39(1):89

    Article  Google Scholar 

  8. El-Fitiany S, Youssef M (2009) Fire Saf J 44(5):691

    Article  Google Scholar 

  9. Caldas RB, Sousa JBM, Fakury RH (2010) Eng Struct 32(9):2832

    Article  Google Scholar 

  10. Pham DT (2014) Analyse par le calcul à la rupture de la stabilité au feu des panneaux en béton armé de grandes dimensions. Université Paris-Est, Thèse

    Google Scholar 

  11. Bleyer J, Pham DT, De Buhan P (2015) Proc ICE-Eng Comput Mech 168(4):178

    Google Scholar 

  12. Bleyer J (2015) Méthodes numériques pour le calcul à la rupture des structures de génie civil. Université Paris-Est, Thèse

    Google Scholar 

  13. EN 1991-1-2 (2002) Eurocode 1: action on structures—Part 1–2: General actions—actions on structures exposed to fire

    Google Scholar 

  14. MSC Software Corporation (2007) MARC finite element software. Los Angeles, CA

    Google Scholar 

  15. EN 1992-1-2 (2004) Eurocode 2: design of concrete structures—Part 1–2: General rules—structural fire design

    Google Scholar 

  16. Pham DT, de Buhan P, Florence C, Heck JV, Nguyen HH (2015) Eng Struct 87:153

    Article  Google Scholar 

  17. Pham DT, de Buhan P, Florence C, Heck JV, Nguyen HH (2015) Eng Struct 90:38

    Article  Google Scholar 

  18. Bleyer J, Pham DT, de Buhan P, Florence C (2015) Direct methods for limit and shakedown analysis of structures. Springer, pp 143–158

    Google Scholar 

  19. Bleyer J, de Buhan P (2016) Eur J Mech—A/Solids 59:178

    Article  Google Scholar 

  20. de Buhan P, Taliercio A (1991) Eur J Mech—A/Solids 10(2):129

    Google Scholar 

  21. Mosek (2014) The Mosek optimization software. http://www.mosek.com/. Assessed Dec 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bleyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bleyer, J., Pham, D.T., de Buhan, P. (2018). Numerical Yield Design Analysis of High-Rise Reinforced Concrete Walls in Fire Conditions. In: Barrera, O., Cocks, A., Ponter, A. (eds) Advances in Direct Methods for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-59810-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59810-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59808-6

  • Online ISBN: 978-3-319-59810-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics