Skip to main content

Processing, Analysis and Visualization of CT Data

  • Chapter
  • First Online:
Industrial X-Ray Computed Tomography

Abstract

In an almost inexhaustible multitude of possibilities, CT allows to inspect highly complex systems and materials. Compared to other testing techniques CT provides results in a quick way: It is nondestructive and does not interfere with the specimen, it allows non-touching characterizations and what is most important CT allows to characterize hidden or internal features. However, CT would not have reached its current status in engineering without the achievements and possibilities in data processing. Only through processing, analysis and visualization of CT data, detailed insights into previously unachievable analyses are facilitated. Novel means of data analysis and visualization illustrate highly complex problems by means of clear and easy to understand renderings. In this chapter, we explore various aspects starting from the generalized data analysis pipeline, aspects of processing, analysis and visualization for metrology, nondestructive testing as well as specialized analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647. doi:10.1109/34.295913.3

    Article  Google Scholar 

  • Al-Rauush R, Papadopoulos A (2010) Representative elementary volume analysis of porous media using X-ray computed tomography. Powder Technol 200(1–2):69–77. doi:10.1016/j.powtec.2010.02.011.3

    Article  Google Scholar 

  • Amirkhanov A, Heinzl C, Reiter M, Kastner J, Gröller E (2011) Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography. IEEE Trans Vis Comput Graph 17(12):2193–2202

    Article  Google Scholar 

  • Amirkhanov A, Heinzl C, Kastner J, Gröller E Fuzzy CT (2013) Metrology: dimensional measurements on uncertain data. In: SCCG proceedings (digital library) Smolenice castle, Slovakia, 2013, pp 8

    Google Scholar 

  • Amirkhanov A, Fröhler B, Kastner J, Gröller E, Heinzl C (2014) InSpectr: Multi-modal exploration, visualization, and analysis of spectral data. Comput Graph Forum 33(3):91–100

    Article  Google Scholar 

  • Amirkhanov A, Amirkhanov A, Salaberger D, Kastner J, Gröller E, Heinzl C (2016) Visual analysis of defects in glass fiber reinforced polymers for 4DCT interrupted in situ tests. Comput Graph Forum 35(3):201–210

    Article  Google Scholar 

  • Ballard D, Brown C (1982) Computer vision, Chap. 2. Prentice-Hall

    Google Scholar 

  • Barr AH (1981) Superquadrics and angle-preserving transformations. IEEE Comput Graph Appl 1(1):11–23. doi:10.1109/MCG.1981.1673799. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1673799&isnumber=35130

  • Beucher S (1991) The watershed transformation applied to image segmentation. Scanning Microsc Int 3:299–314

    Google Scholar 

  • Beucher S, Lantuejoul C (1979) Use of watersheds in contour detection. In: International workshop on image processing: real-time edge and motion detection/estimation, Rennes, France, Sept 1979

    Google Scholar 

  • Bhattacharya A, Heinzl C, Amirkhanov A, Kastner J, Wenger R (2015) MetaTracts—a method for robust extraction and visualization of carbon fiber bundles in fiber reinforced composites. In: Proceedings of IEEE pacific visualization symposium (PacificVis) 2015, Hangzhou, China, 2015, pp 191–198

    Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8:679–698. doi:10.1109/TPAMI.1986.4767851.3

  • Cole L, Austin D, Cole L (2004) Visual object recognition using template matching. In: Australian conference on robotics and automation, 2004

    Google Scholar 

  • Fabijańska A (2015) Subpixel edge detection in blurry and noisy images. Int J Comput Sci Appl 12(2):1–19

    Google Scholar 

  • Felkel P, Bruckschwaiger M, Wegenkittl R (2001) Implementation and complexity of the watershed-from-markers algorithm computed as a minimal cost forest. Comput Graph Forum 20(3):26–35

    Article  Google Scholar 

  • Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Proceedings of the 1st international conference of medical image computing and computer-assisted intervention (MICCAI 1998), pp 130–137

    Google Scholar 

  • Fritz L, Hadwiger M, Geier G, Pittino G, Gröller E (2009) A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete. IEEE Trans Vis Comput Graph 15(6):1343–1350

    Article  Google Scholar 

  • Froehler B, Möller T, Heinzl C (2016) GEMSe: visualization-guided exploration of multi-channel segmentation algorithms. Comput Graph Forum 35(3):8

    Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2000) Hessian determinants. §14.314 in tables of integrals, series, and products, 6th edn. Academic Press, San Diego, p 1069

    Google Scholar 

  • Grigoryan G, Rheingans P (2004) Point-based probabilistic surfaces to show surface uncertainty. IEEE Trans Vis Comput Graph 10(5):564–573

    Article  Google Scholar 

  • Heinzl C, Klingesberger R, Kastner J, Gröller E (2006) Robust surface detection for variance comparison. In: Proceedings of eurographics/IEEE VGTC symposium on visualisation, 2006, pp 75–82

    Google Scholar 

  • Heinzl C, Kastner J, Gröller E (2007) Surface extraction from multi-material components for metrology using dual energy CT. IEEE TVCG 13:1520–1527

    Google Scholar 

  • Heinzl C, Kastner J, Möller T, Gröller E (2008) Statistical analysis of multi-material components using dual energy CT. In: Proceedings of vision, modeling, and visualization, Konstanz, Germany, 2008, pp 179–188

    Google Scholar 

  • Heinzl C, Reiter M, Allerstorfer M, Kastner J, Gröller E (2010) Artefaktreduktion mittels Dual Viewing für Röntgen computer tomographie von Multimaterial bauteilen, DGZFP-Jahrestagung, p 8

    Google Scholar 

  • Hsieh J (2003) Computed tomography: principles, design, artifacts and recent advances. SPIE-The International Society for Optical Engineering, 2003

    Google Scholar 

  • Huang R, Ma K-L, Mccormick P, Ward W (2003) Visualizing industrial CT volume data for nondestructive testing applications. In: VIS ’03: Proceedings of the 14th IEEE visualization 2003 (VIS’03), pp 547–554

    Google Scholar 

  • Jin JS (1990) An adaptive algorithm for edge detection with subpixel accuracy in noisy images. In: Proceedings of IAPR workshop on machine vision applications, 1990, pp 249–252

    Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Wiley, New York

    Google Scholar 

  • Kindlmann GL (2004) Superquadric tensor glyphs. In: Deussen O, Hansen CD, Keim DA, Saupe D (eds) VisSym. Eurographics Association, pp 147–154

    Google Scholar 

  • Kohonen T (1990) The self-organizing map. In: Proceedings of the IEEE, 78(9):1464–1480. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=58325&isnumber=2115. doi:10.1109/5.58325

  • Lifton JJ (2015) The influence of scatter and beam hardening in X-ray computed tomography for dimensional metrology. Ph.D. thesis, University of Southampton, Faculty of Engineering and the Environment Electro-Mechanical Engineering Research Group, Apr 2015

    Google Scholar 

  • Lorensen W, Cline H (1987) Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21:163–169

    Article  Google Scholar 

  • Munzner T (2014) Visualization analysis and design. CRC Press

    Google Scholar 

  • Oehler M, Buzug TM (2007) A sinogram based metal artifact suppression strategy for transmission computed tomography. In: Geometriebestimmung mit industrieller Computer tomographie, PTB-Bericht PTB-F-54, Braunschweig, 2007, pp 255–262

    Google Scholar 

  • Ohser J, Schladitz K (2009) 3D images of materials structures: processing and analysis. Wiley, New York

    Book  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4310076&isnumber=4310064. doi:10.1109/TSMC.1979.4310076

  • Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  • Redenbach C, Rack A, Schladitz K, Wirjadi O, Godehardt M (2012) Beyond imaging: on the quantitative analysis of tomographic volume data. Int J Mater Res 103(2):217–227

    Article  Google Scholar 

  • Reh A, Plank B, Kastner J, Gröller E, Heinzl C (2012) Porosity maps: interactive exploration and visual analysis of porosity in carbon fiber reinforced polymers using X-ray computed tomography. Comput Graph Forum 31(3):1185–1194

    Article  Google Scholar 

  • Reh A, Gusenbauer C, Kastner J, Gröller E, Heinzl C (2013) MObjects—a novel method for the visualization and interactive exploration of defects in industrial XCT data. IEEE Trans Vis Comput Graph (TVCG) 19(12):2906–2915

    Article  Google Scholar 

  • Reh A, Amirkhanov A, Kastner J, Gröller E, Heinzl C (2015) Fuzzy feature tracking: visual analysis of industrial 4D-XCT data. Comput Graph 53:177–184

    Article  Google Scholar 

  • Rhodes PJ et al (2003) Uncertainty visualization methods in isosurface rendering. Eurographics, vol 2003

    Google Scholar 

  • Salaberger D, Kannappan KA, Kastner J, Reussner J, Auinger T (2011) Evaluation of computed tomography data from fibre reinforced polymers to determine fibre length distribution. Int Polym Proc 26:283–291

    Article  Google Scholar 

  • Schmitt R, Hafner P, Pollmanns S (2008) Kompensation von Metallartefakten in tomographischen Aufnahmen mittels Bilddatenfusion. In: Proceedings of Industrielle Computertomographie, Fachtagung, 2008, pp 117–122

    Google Scholar 

  • Schroeder W, Maynard R, Geveci B (2015) Flying edges: a high-performance scalable isocontouring algorithm. In: IEEE 5th symposium on large data analysis and visualization (LDAV), 2015, Chicago, IL, pp. 33–40

    Google Scholar 

  • Selim SZ, Ismail MA (1984) K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans Pattern Anal Mach Intell PAMI-6(1):81–87. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4767478&isnumber=4767466. doi:10.1109/TPAMI.1984.4767478

  • Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J. Electron Imaging 13(1):146–168

    Article  Google Scholar 

  • Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE symposium on visual languages, Washington. IEEE Computer Society Press, http://citeseer.ist.psu.edu/409647.html, pp 336–343

  • Steinbeiss H (2005) Dimensionelles Messen mit Mikro-Computertomographie. Ph.D. thesis, Technische Universität München

    Google Scholar 

  • Straumit Ilya, Lomov Stepan V, Wevers Martine (2015) Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Compos A Appl Sci Manuf 69:150–158

    Article  Google Scholar 

  • Tabatabai AJ, Mitchell OR (1984) Edge location to sub-pixel values in digital imagery. IEEE Trans Pattern Anal Mach Intell 6(2):188–201

    Article  Google Scholar 

  • Tomasi C, Manduchi R (1998) Bilateral filtering for gray and colour images. In: Proceedings of the IEEE international conference on computer vision, pp 839–846

    Google Scholar 

  • Volumegraphics: VG Studio Max 2.2—User’s Manual. http://www.volumegraphics.com/fileadmin/user_upload/flyer/VGStudioMAX_22_en.pdf. Last accessed Mar 2016

  • Wang J, Wang S, Chen Y, Wu J, Coatrieux J-L, Luo L (2013) Metal artifact reduction in CT using fusion based prior image. Med Phys 40:081903

    Article  Google Scholar 

  • Weissenböck J, Amirkhanov A, Li W, Reh A, Amirkhanov A, Gröller E, Kastner J, Heinzl C (2014) FiberScout: an interactive tool for exploring and analyzing fiber reinforced polymers. In: Proceedings of IEEE pacific visualization symposium (PacificVis), 2014, Yokohama, Japan, pp 153–160

    Google Scholar 

  • Wold Svante, Esbensen Kim, Geladi Paul (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1-3):37–52

    Article  Google Scholar 

  • Xu GS (2009) Sub-pixel edge detection based on curve fitting. In: Proceedings of 2nd International conference on information and computing science, pp 373–375

    Google Scholar 

  • Yao Y, Ju H (2009) A sub-pixel edge detection method based on canny operator. In: Proceedings of 6th international conference on fuzzy systems and knowledge discovery, pp 97–100

    Google Scholar 

  • Zhigeng P, Jianfeng L (2007) A bayes-based region-growing algorithm for medical image segmentation. Comput Sci Eng 9:32–38. doi:10.1109/MCSE.2007.67.3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Heinzl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Heinzl, C., Amirkhanov, A., Kastner, J. (2018). Processing, Analysis and Visualization of CT Data. In: Carmignato, S., Dewulf, W., Leach, R. (eds) Industrial X-Ray Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-59573-3_4

Download citation

Publish with us

Policies and ethics