Skip to main content

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 49))

Abstract

This chapter describes briefly the key aspects behind the derivation of precise radial velocities. I start by defining radial velocity precision in the context of astrophysics in general and exoplanet searches in particular. Next I discuss the different basic elements that constitute a spectrograph, and how these elements and overall technical choices impact on the derived radial velocity precision. Then I go on to discuss the different wavelength calibration and radial velocity calculation techniques, and how these are intimately related to the spectrograph’s properties. I conclude by presenting some interesting examples of planets detected through radial velocity, and some of the new-generation instruments that will push the precision limit further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Which can be found, e.g., at http://optics.hanyang.ac.kr/~shsong/Grating%20handbook.pdf.

  2. 2.

    Importantly, spectrographs with variable slit width separate the transmission of the spectrograph into transmission of the spectrograph × transmission of the slit, and detail the transmission of the latter as a function of its (tunable) properties.

  3. 3.

    This error can be represented as a function of pixel i, becoming σ i and even characterize other sources of error, without loss of generality.

References

  • Anglada-Escudé, G., Amado, P.J., Barnes, J., et al.: Nature 536, 437 (2016)

    Article  ADS  Google Scholar 

  • Artigau, É., Kouach, D., Donati, J.-F., et al.: In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9147, 15 (2014)

    Google Scholar 

  • Astudillo-Defru, N., Bonfils, X., Delfosse, X., et al.: Astron. Astrophys. 575, A119 (2015)

    Article  Google Scholar 

  • Avila, G., Singh, P.: Advanced optical and mechanical technologies in telescopes and instrumentation. In: Proceeding of SPIE, vol. 7018, 70184W (2008)

    ADS  Google Scholar 

  • Baranne, A., Queloz, D., Mayor, M., et al.: Astron. Astrophys. Suppl. Ser. 119, 373 (1996)

    Article  ADS  Google Scholar 

  • Bouchy, F., Pepe, F., Queloz, D.: Astron. Astrophys. 374, 733 (2001)

    Article  ADS  Google Scholar 

  • Bretagnon, P., Francou, G.: Astron. Astrophys. 202, 309 (1988)

    ADS  Google Scholar 

  • Butler, R.P., Marcy, G.W., Williams, E., et al.: Publ. Astron. Soc. Pac. 108, 500 (1996)

    Article  ADS  Google Scholar 

  • Chazelas, B., Pepe, F., Wildi, F., et al.: Modern technologies in space- and ground-based telescopes and instrumentation. In: Proceeding of SPIE, vol. 7739, 773947 (2010)

    Google Scholar 

  • Connes, P.: Astrophys. Space Sci. 110, 211 (1985)

    Article  ADS  Google Scholar 

  • Conod, U., Blind, N., Wildi, F., Pepe, F.: ArXiv e-prints, arXiv:1608.01124 (2016)

    Google Scholar 

  • Cosentino, R., Lovis, C., Pepe, F., et al.: Ground-based and airborne instrumentation for astronomy IV. In: Proceeding of SPIE, vol. 8446, 84461V (2012)

    Google Scholar 

  • Figueira, P., Adibekyan, V. Z., Oshagh, M., et al.: Astron. Astrophys. 586, A101 (2016)

    Article  Google Scholar 

  • Halverson, S., Mahadevan, S., Ramsey, L., et al.: Publ. Astron. Soc. Pac. 126, 445 (2014)

    Article  ADS  Google Scholar 

  • Hatzes, A.P., Cochran, W.D.: In: Ulrich, M.-H. (ed.) European Southern Observatory Astrophysics Symposia, vol. 40, 275+ (1992)

    Google Scholar 

  • Lo Curto, G., Manescau, A., Avila, G., et al.: In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446 (2012)

    Google Scholar 

  • Lovis, C., Ségransan, D., Mayor, M., et al.: Astron. Astrophys. 528, A112 (2011)

    Article  Google Scholar 

  • Mayor, M., Pepe, F., Queloz, D., et al.: The Messenger 114, 20 (2003)

    ADS  Google Scholar 

  • Motalebi, F., Udry, S., Gillon, M., et al.: Astron. Astrophys. 584, A72 (2015)

    Article  Google Scholar 

  • Pasquini, L., Avila, G., Blecha, A., et al.: The Messenger 110, 1 (2002)

    ADS  Google Scholar 

  • Pepe, F., Mayor, M., Galland, F., et al.: Astron. Astrophys. 388, 632 (2002)

    Article  ADS  Google Scholar 

  • Pepe, F.A., Cristiani, S., Rebolo Lopez, R., et al.: In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7735 (2010)

    Google Scholar 

  • Pepe, F., Cameron, A.C., Latham, D.W., et al.: Nature 503, 377 (2013)

    Article  ADS  Google Scholar 

  • Pepe, F., Molaro, P., Cristiani, S., et al.: Astron. Nachr. 335, 8 (2014)

    Article  ADS  Google Scholar 

  • Quirrenbach, A., Amado, P.J., Caballero, J.A., et al.: In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9147, 1 (2014)

    Google Scholar 

  • Reiners, A., Banyal, R.K., Ulbrich, R.G.: Astron. Astrophys. 569, A77 (2014)

    Article  ADS  Google Scholar 

  • Schroeder, D.J.: Astronomical Optics. Academic Press, San Diego (1987)

    Google Scholar 

  • Vogt, S.S., Allen, S.L., Bigelow, B.C., et al.: Instrumentation in astronomy VIII. In: Crawford, D.L., Craine, E. R. (eds.) Proceeding of SPIE, vol. 2198, 362 (1994)

    Google Scholar 

  • Wildi, F., Pepe, F., Chazelas, B., Lo Curto, G., Lovis, C.: In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8151 (2011)

    Google Scholar 

Download references

Acknowledgements

I acknowledge support by Fundaçãdo para a Ciência e a Tecnologia (FCT) through Investigador FCT contract of reference IF/01037/2013/CP1191/CT0001, and POPH/FSE (EC) by FEDER funding through the program “Programa Operacional de Factores de Competitividade - COMPETE”. I further acknowledge support from FCT in the form of an exploratory project of reference also IF/01037/2013/CP1191/CT0001. I acknowledge Peter Sport Café for showing me what a good gin tonic tastes like, and Mário João Monteiro, Mahmoudreza Oshagh and Vardan Adibekyan for reminding me that good science requires good statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Figueira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Figueira, P. (2018). Deriving High-Precision Radial Velocities. In: Campante, T., Santos, N., Monteiro, M. (eds) Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds. Astrophysics and Space Science Proceedings, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-59315-9_10

Download citation

Publish with us

Policies and ethics