Skip to main content

Abstract

A number of parasitic diseases seriously affect animal/crop production worldwide. Traditionally, the use of chemical anthelmintic drugs or pesticides is considered the commonest method of controlling such parasites. However, this has triggered an imminent risk to public health due to the continuous exposure of people to those chemical products. In addition, parasites, after being in continuous contact with the pesticide or anthelmintic chemical molecules for long periods, eventually develop resistance, surviving dosages that used to kill them. During the last decades, the use of environmentally friendly alternatives has been extensively investigated in the search for healthier animal or plant products for human consumption. Likewise, the use of beneficial microorganisms as natural control agents is gaining a very good reputation over chemical anthelmintic drugs for cattle and sheep or for pests and plant pathogens affecting important crops worldwide. Nematophagous fungi are natural nematode antagonists that offer very good hopes for the control of animal and plant-parasitic nematodes. In particular, the fungus Pochonia chlamydosporia has shown an enormous potential to control a number of genera/species of plant-parasitic nematodes of economic importance. The present chapter provides a general view of the potential use of this promising biotechnological tool against plant- and animal-parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo, J. M., Araújo, J. V., Braga, F. R., et al. (2009). Activity of the nematophagous fungi Pochonia chlamydosporia, Duddingtonia flagrans and Monacrosporium thaumasium on egg capsules of Dipylidium caninum. Veterinary Parasitology, 166, 86–89.

    Article  PubMed  Google Scholar 

  • Araujo, J. M., Araújo, J. V., Braga, F. R., et al. (2013). Predatory activity of chlamydospores of the fungus Pochonia chlamydosporia on Toxocara canis eggs under laboratory conditions. Revista Brasileira de Parasitologia Veterinária, 22, 171–174.

    Article  PubMed  Google Scholar 

  • Ashad, A. F., Anisuzzaman, B. N., Dey, R. A., et al. (2011). Factors affecting the development and hatching of eggs and the survival of infective larvae of Haemonchus contortus in laboratory conditions. Progressive Agriculture, 22, 75–83.

    Google Scholar 

  • Barron G. L. (1977). The Nematode-Destroying Fungi. Topics in Microbiology No. 1. Department of Environmental Biology, University of Guelph, Canada. Canadian Biological Publications.

    Google Scholar 

  • Bhattarai, A., Bhattarai, B., & Pandey, S. (2015). Variation of soil microbial population in different soil horizons. Journal of Microbiology & Experimentation, 2(2), 00044. doi:10.15406/jmen.2015.02.00044.

    Article  Google Scholar 

  • Braga, F. R., Araújo, J. V., Campos, A. K., et al. (2007). Observação in vitro da ãçao dos isolados fúngicos Duddingtonia flagrans, Monacrosporium thaumasium e Verticillium chlamydosporium sobre ovos de Ascaris lumbricoides (Linnaeus, 1758). Revista da Sociedade Brasileira de Medicina Tropical, 40, 356–358.

    Article  PubMed  Google Scholar 

  • Braga, F. R., Araújo, J. V., Campos, A. K., et al. (2008a). In vitro evaluation of the action of the nematophagous fungi Duddingtonia flagrans, Monacrosporium sinense and Pochonia chlamydosporia on Fasciola hepatica eggs. World Journal of Microbiology and Biotechnology, 24, 1559–1564.

    Article  Google Scholar 

  • Braga, F. R., Araújo, J. V., Campos, A. K., et al. (2008b). In vitro evaluation of the action of the nematophagous fungi Duddingtonia flagrans, Monacrosporium sinense and Pochonia chlamydosporia on Schistosoma mansoni eggs. World Journal of Microbiology and Biotechnology, 24, 2713–2716.

    Article  Google Scholar 

  • Braga, F. R., Araújo, J. V., Carvalho, R. O., et al. (2009). Ovicidal effect of nematophagous fungi on Taenia taeniaeformis eggs. World Journal of Microbiology and Biotechnology, 25, 533–535.

    Article  Google Scholar 

  • Braga, F. R., Araújo, J. V., Ricardo Silva, A., et al. (2010a). Viability of the nematophagous fungus Pochonia chlamydosporia after passage through the gastrointestinal tract of horses. Veterinary Parasitology, 168, 264–268.

    Article  PubMed  Google Scholar 

  • Braga, F. R., Araújo, J. V., Carvalho, O. R., et al. (2010b). Ovicidal action of a crude enzymatic extract of the fungus Pochonia chlamydosporia against cyathostomin eggs. Veterinary Parasitology, 172, 264–268.

    Article  PubMed  Google Scholar 

  • Braga, F. R., Araújo, J. V., Silva, A. R., et al. (2010c). Duddingtonia flagrans, Monacrosporium thaumasium and Pochonia chlamydosporia as possible biological control agents of Oxyuris equi and Austroxyuris finlaysoni. Journal of Helminthology, 84, 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Braga, F. R., Ferreira, S. R., Araújo, J. V., et al. (2010d). Predatory activity of Pochonia chlamydosporia fungus on Toxocara (syn. Neoascaris) vitulorum eggs. Tropical Animal Health and Production, 42, 309–314.

    Article  PubMed  Google Scholar 

  • Braga, F. R., & Araújo, J. V. (2014). Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98, 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Casas-Flores, S., & Herrera-Estrella, A. (2015). Antagonism of plant parasitic nematodes by fungi. In C. Kubicek & I. Druzhinina (Eds.), Environmental and microbial relationships (pp. 43–66). Heidelberg: Springer.

    Google Scholar 

  • Cooper, K. M., Whelan, M., Kennedy, D. G., et al. (2012). Anthelmintic drug residues in beef: UPLC-MS/MS method validation, European retail beef survey, and associated exposure and risk assessments, food additives and contaminants: Part A: Chemistry, analysis, Control, exposure and amp. Risk Assessment, 29, 746–760.

    CAS  Google Scholar 

  • de Carvalho, L. M., Braga, F. R., Domingues, R. R., et al. (2013). Interaction of the nematophagous fungus Pochonia chlamydosporia and Parascaris equorum eggs in different culture media. Journal of Basic Microbiology, 54(Suppl 1), S109–S114. doi: 10.1002.

    PubMed  Google Scholar 

  • Dias, A. S., Araújo, J. V., Braga, F. R., et al. (2012). Biological control of Fasciola hepatica eggs with the Pochonia chlamydosporia fungus after passing through the cattle intestinal tract. Parasitology Research, 110, 663–667.

    Article  PubMed  Google Scholar 

  • Dias, S. A., Araújo, B. R., Pippin, C. A., et al. (2013). Pochonia chlamydosporia in the biological control of Fasciola hepatica in cattle in southern Brazil. Parasitology Research, 112, 2131–2136.

    Article  CAS  PubMed  Google Scholar 

  • Esteves, I., Peteira, B., Atkins, S. D., et al. (2009). Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycological Research, 113, 867–876.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, S. R., Araújo, J. V., Braga, F. R., et al. (2011). Ovicidal activity of seven Pochonia chlamydosporia fungal isolates on Ascaris suum eggs. Tropical Animal Health and Production, 43, 639–642.

    Article  PubMed  Google Scholar 

  • Ferris, H. (2010). Contribution of nematodes to the structure and function of the soil food web. Journal of Nematology, 42, 63–67.

    PubMed  PubMed Central  Google Scholar 

  • Franco-Navarro, F., Vilchis-Martínez, K., & Miranda-Damián, J. (2008). Nuevos registros de Pochonia chlamydosporia: aislamiento, colonización de raíces y parasitismo de huevos de Nacobbus aberrans. Nematropica, 39, 133–142.

    Google Scholar 

  • Frassy, L. N., Braga, F. R., Silva, A. R., et al. (2010). Destruction of Toxocara canis eggs by the nematophagous fungus Pochonia chlamydosporia. Revista da Sociedade Brasileira de Medicina Tropical, 43, 102–104.

    Article  PubMed  Google Scholar 

  • Gortari, C., Cazau, C., & Hours, R. (2007). Nematophagous fungi of Toxocara canis in a public park of La Plata, Argentina. Revista Iberoamericana de Micología, 24, 24–28.

    Article  PubMed  Google Scholar 

  • Hiura, E., Lopez, A. C. G., Da Paz, J. S., et al. (2015). Fungi predatory activity on embryonated Toxocara canis eggs inoculated in domestic chickens (Gallus gallus domesticus) and destruction of second stage larvae. Parasitology Research, 114, 3301–3308.

    Article  PubMed  Google Scholar 

  • Horvat, A. J. M., Babic, S., Pavlovic, D. M., et al. (2012). Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trends in Analytical Chemistry, 31, 61–84.

    Article  CAS  Google Scholar 

  • Larsen, M. (1999). Biological control of helminths. International Journal for Parasitology, 29, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Lelis, R. T., Braga, F. R., de Carvalho, L. M., et al. (2014). Effect of the fungus Pochonia chlamydosporia on Echinostoma paraensei (Trematoda: Echinostomatidae). Acta Tropica, 139, 88–92.

    Article  PubMed  Google Scholar 

  • Li, G., Zhang, K., Xu, J., et al. (2007). Nematicidal substances from fungi. Recent Patents on Biotechnology, 1, 212–1233.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Han, Y., Wang, B. B., et al. (2015). Isolation, identification, and characterization of the nematophagous fungus Monacrosporium salinum from China. Journal of Basic Microbiology, 55, 992–1001.

    Article  PubMed  Google Scholar 

  • Lysek, H. (1976). Classification of ovicide fungi according to type of ovidicity. Acta Universal Palak Olomue, 76, 9–13.

    Google Scholar 

  • Lysek, H., & Sterba, J. (1991). Colonization of Ascaris lumbricoides eggs by the fungus Verticillium chlamydosporium Goddard. Folia Parasitologica, 38, 255–259.

    CAS  PubMed  Google Scholar 

  • Lysek, H., Fassatiová, P. N. C., et al. (1982). Ovicidal fungi in soils of Cuba. Folia Parasitologica, 29, 265–270.

    CAS  PubMed  Google Scholar 

  • Maciel, S. A., Freitas, G. L., Figueiredo, D. L., et al. (2012). Antagonistic activity of the fungus Pochonia chlamydosporia on mature and immature Toxocara canis eggs. Parasitology, 139, 1074–1085.

    Article  CAS  PubMed  Google Scholar 

  • Mehl L. H., Kleczeuski N. (2015). Disease and Nematode Management in Field Crops. Disease and Nematode Management in Field Crops: Corn and Sorghum 3–1. https://pubs.ext.vt.edu/456/456-016/Section03-Diseases-and-Nematodes-1-full.pdf

  • Mendoza de Gives, P. (2011). Carnivorous fungi: The cruelest executioners of nematodes in the soil. Mushroom Journal, 1, 31–36.

    Google Scholar 

  • Mendoza de Gives, P., & Alatorre, R. (2011). Nematodos: Un mundo de gusanos. Ciencia y Desarrollo, 237, 40–44.

    Google Scholar 

  • Mi, Q. L., Yang, J. K., Ye, F. P., et al. (2010). Cloning and over expression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochemistry, 45, 810−814.

    Article  Google Scholar 

  • Mota, M. A., Campos, A. K., & Araújo, J. V. (2003). Controle biológico de helmintos parásitos de animais: atual e perspectivas futuras. Pesquisa Veterinária Brasileira, 23, 93–100.

    Article  Google Scholar 

  • Qamar, F. M., Maqbool, A., & Ahmad, N. (2015). Economic losses due to haemonchosis in sheep and goats. Science International, 23, 321–324.

    Google Scholar 

  • Shen, W., Mao, H., Huang, Q., et al. (2015). Benzenediol lactones: A class of fungal metabolites with diverse structural features and biological activities. European Journal of Medicinal Chemistry, 97, 747–777.

    Article  CAS  PubMed  Google Scholar 

  • Silva, A. R., Araújo, J. V., Braga, R. F., et al. (2010). In vitro ovicidal activity of the nematophagous fungi Duddingtonia flagrans, Monacrosporium thaumasium and Pochonia chlamydosporia on Trichuris vulpis eggs. Veterinary Parasitology, 172, 76–79.

    Article  CAS  PubMed  Google Scholar 

  • Silva, A. R., Araújo, J. V., Braga, F. R., et al. (2011). Comparative analysis of destruction of the infective forms of Trichuris trichiura and Haemonchus contortus by nematophagous fungi Pochonia chlamydosporia; Duddingtonia flagrans and Monacrosporium thaumasium by scanning electron microscopy. Veterinary Microbiology, 147, 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R., & Kumar, U. (2013). Assessment of nematode distribution and yield losses in vegetable crops of western Uttar Pradesh in India. International Journal of Science and Research, 4, 2812–2816.

    Google Scholar 

  • Singh, R. K., Sanyal, P. K., Patel, N. K., et al. (2010). Fungus-benzimidazole interactions: A prerequisite to deploying egg-parasitic fungi Paecilomyces lilacinus and Verticillium chlamydosporium as biological control agents against fasciolosis and amphistomiasis in ruminant livestock. Journal of Helminthology, 84, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Thapa, S., Meyling, N. V., Katakam, K. K., et al. (2015). A method to evaluate relative ovicidal effects of soil microfungi on thick-shelled eggs of animal-parasitic nematodes. Biocontrol Science and Technology, 25, 756–767.

    Article  Google Scholar 

  • Trifonova, Z., & Karadjova, J. (2003). Fungal parasitism of the cyst and eggs of the Globodera rostochiensis. The Journal of Agricultural Science, 48, 103−110.

    Google Scholar 

  • Wang, Y., Sun, L., Yi, S., Huang, Y., Lenaghan, S. C., & Zhang, M. (2013). Naturally occurring nanoparticles from arthrobotrys oligospora as a potential immunostimulatory and antitumor agent. Advanced Functional Materials, 23, 2175–2184. doi:10.1002/adfm.201202619.

  • Ward, E., Kerry, B. R., Manzanilla-López, R. H., et al. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: Implications for nematode biocontrol. PloS One, 7(4), e35657. doi:10.1371/journal.pone.0035657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, I., Lofreedo, A., Borneman, J., et al. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil. Journal of Nematology, 44, 67–71.

    PubMed  PubMed Central  Google Scholar 

  • Zavala-Gonzalez, E. A., Escudero, N., Lopez-Moya, F., et al. (2015). Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. The Annals of Applied Biology, 166, 472–483.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Mendoza de Gives .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Gives, P.M., Braga, F.R. (2017). Pochonia chlamydosporia: A Promising Biotechnological Tool Against Parasitic Nematodes and Geohelminths. In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_17

Download citation

Publish with us

Policies and ethics