Skip to main content

Dispersion, Photochemical Transformation, and Bioaccumulation of Pollutants in the Vicinity of Highway

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management
  • 299 Accesses

Abstract

Road traffic is one of the most significant sources of the atmosphere pollution in urban areas, which leads to serious ecological, economical, and social problems. Among the most toxic components of the road traffic emission are carbon, sulfur, and nitrogen oxides, hydrocarbons, airborne particulate matter, polycyclic aromatic hydrocarbons, heavy metals, and dioxins. Some other toxic components are formed within the zone of a highway influence during the day time due to photochemical processes. This chapter gives an analysis of various physical, chemical, and biochemical processes that occur in the vicinity of highway and lead to transformation of pollutants and their interaction with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ait-Helal W, Beeldens A, Boonen E, Borbon A, Boréave A, Cazaunau M, Chen H et al (2015) On-road measurements of NMVOCs and NOx: determination of light-duty vehicles emission factors from tunnel studies in Brussels city center. Atmos Environ 122:799–807

    Article  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NO x . Atmos Environ 34:2063–2101

    Article  Google Scholar 

  • Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I-gas phase reactions of O x , HO x , NO x and SO x species. Atmos Chem Phys 4:1461–1738

    Article  Google Scholar 

  • Bacci E, Calamari D, Gaggi C, Vighi M (1990) Bioconcentration of organic chemical vapors in plant leaves: experimental measurements and correlation. Environ Sci Technol 24:885–889

    Article  Google Scholar 

  • Bange P, Janssen LHJM, Nieuwstadt FTM, Visser H, Erbrink JJ (1991) Improvement of the modeling of daytime nitrogen oxide oxidation in plumes by using instantaneous plume dispersion parameters. Atmos Environ A 25:2321–2328

    Article  Google Scholar 

  • Bowne NE (1984) Atmospheric dispersion. In: Calvert S, Englund H (eds) Handbook of air pollution technology. Wiley, New York, pp 859–893

    Google Scholar 

  • Brusca S, Famoso F, Lanzafame R, Mauro S, Messina M, Strano S (2016) PM10 dispersion modeling by means of CFD 3D and Eulerian–Lagrangian models: analysis and comparison with experiments. Energy Procedia 101:329–336

    Article  Google Scholar 

  • Chang MB, Chang SH, Chen YW, Hsu HC (2004) Dioxin emission factors for automobiles from tunnel air sampling in Northern Taiwan. Sci Total Environ 325:129–138

    Article  Google Scholar 

  • Clements AL, Jia Y, Denbleyker A, McDonald-Buller E, Fraser MP, Allen DT, Collins DR, Michel E, Pudota J, Sullivan D, Zhu Y (2009) Air pollutant concentrations near three Texas roadways, part II: chemical characterization and transformation of pollutants. Atmos Environ 43:4523–4534

    Article  Google Scholar 

  • Czub G, McLachlan MS (2004) A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ Toxicol Chem 23:2356–2366

    Article  Google Scholar 

  • Dechaux JC, Zimmermann V, Coddeville P (1990) Effect of clouds on photolysis rates at the surface: a practical method of estimation and its application to a modeling study of the formation of photochemical oxidants. Atmos Environ 24A:1705–1711

    Article  Google Scholar 

  • Dowd RM (1988) Regulatory focus: EPA revisits dioxin risks. Environ Sci Technol 22:373–373

    Article  Google Scholar 

  • Fantke P, Arnot JA, Doucette WJ (2016) Improving plant bioaccumulation science through consistent reporting of experimental data. J Environ Manag 181:374–384

    Article  Google Scholar 

  • Frank B, Schlögl R, DS S (2013) Diesel soot toxification. Environ Sci Technol 47:3026–3027

    Article  Google Scholar 

  • Gerasimov G (2000) Emission and photochemical conversion of harmful substances in the area of action of the highway. Chem Phys 19(10):62–67

    Google Scholar 

  • Gerasimov G (2002) Spreading of condensable organic compounds near the highway. Chem Phys 21(6):80–86

    Google Scholar 

  • Gerasimov G (2006) Spreading and photochemical conversion of harmful substances near a large city. Chem Phys 25(2):72–80

    Google Scholar 

  • Gerasimov G (2007) Modelling study of electron-beam polycyclic and nitro-polycyclic aromatic hydrocarbons treatment. Radiat Phys Chem 76:27–36

    Article  Google Scholar 

  • Gerasimov G (2015) Kinetic mechanisms of electron-beam induced polycyclic aromatic hydrocarbons transformation in flue gases. Plasma Chem Plasma Process 35:895–911

    Article  Google Scholar 

  • Gerasimov G (2016) Modeling study of polychlorinated dibenzo-p-dioxins and dibenzofurans behavior in flue gases under electron beam irradiation. Chemosphere 158:100–106

    Article  Google Scholar 

  • Gibson MD, Kundu S, Satish M (2013) Dispersion model evaluation of PM2.5, NO x and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos Pollut Res 4:157–167

    Article  Google Scholar 

  • Gilbert NL, Golgberg MS, Brook JR, Jerrett M (2007) The influence of highway traffic on ambient nitrogen dioxide concentrations beyond the immediate vicinity of highways. Atmos Environ 41:2670–2673

    Article  Google Scholar 

  • Gobas FAPC, Burkhard LP, Doucette WJ, Sappington KG, Verbruggen EMJ, Hope BK, Bonnell MA, Arnot JA, Tarazona JV (2015) Review of existing terrestrial bioaccumulation models and terrestrial bioaccumulation modeling needs for organic chemicals. Integr Environ Assess Manag 12:123–134

    Article  Google Scholar 

  • Goliff WS, Stockwell WR, Lawson CV (2013) The regional atmospheric chemistry mechanism, version 2. Atmos Environ 68:174–185

    Article  Google Scholar 

  • Gordon M, Staebler RM, Liggio J, Li S-M, Wentzell J, Lu G, Lee P, Brook JR (2012) Measured and modeled variation in pollutant concentration near roadways. Atmos Environ 57:138–145

    Article  Google Scholar 

  • Griffiths RF (1994) Errors in the use of the Briggs parameterization for atmospheric dispersion coefficients. Atmos Environ 28:2861–2865

    Article  Google Scholar 

  • Hewitt CN (2001) The atmospheric chemistry of sulphur and nitrogen in power station plumes. Atmos Environ 35:1155–1170

    Article  Google Scholar 

  • Hirabayashi S, Kroll CN, Nowak DJ (2011) Component-based development and sensitivity analyses of an air pollutant dry deposition model. Environ Model Softw 26:804–816

    Article  Google Scholar 

  • Holmes NS, Morawska L (2006) A review of dispersion modeling and its application to the dispersion of particles: an overview of different dispersion models available. Atmos Environ 40:5902–5928

    Article  Google Scholar 

  • Horstmann M, McLachlan MS (1998) Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos Environ 32:1799–1809

    Article  Google Scholar 

  • Hygienic standard (2003) GN 2.1.6.1338–03, Maximum permissible concentrations (MPCs) of pollutants in atmospheric air of human settlements. Ministry of Health, Moscow

    Google Scholar 

  • Janssen LHJM, Van Wakeren JHA, Van Duuren H, Elshout AJ (1988) A classification of no oxidation rates in power plant plumes based on atmospheric conditions. Atmos Environ 22:43–53

    Article  Google Scholar 

  • Karavalakis G, Poulopoulos S, Zervas E (2012) Impact of diesel fuels on the emissions of non-regulated pollutants. Fuel 102:85–91

    Article  Google Scholar 

  • Kwon S, Park Y, Park J, Kim J, Choi K-H, Cha J-S (2017) Characteristics of on-road NO x emissions from Euro 6 light-duty diesel vehicles using a portable emissions measurement system. Sci Total Environ 576:70–77

    Article  Google Scholar 

  • Komp P, McLachlan MS (1997) Interspecies variability of the plant/air partitioning of polychlorinated biphenils. Environ Sci Technol 31:2944–2948

    Google Scholar 

  • Laroo CA, Schenk CR, Sanchez LJ, McDonald J, Smith PL (2012) Emissions of PCDD/Fs, PCBs, and PAHs from legacy on-road heavy-duty diesel engines. Chemosphere 89:1287–1294

    Article  Google Scholar 

  • Leone JA, Seinfeld JH (1985) Comparative analysis of chemical reaction mechanisms for photochemical smog. Atmos Environ 19:437–464

    Article  Google Scholar 

  • Mancilla Y, Mendoza A (2012) A tunnel study to characterize PM2.5 emissions from gasoline-powered vehicles in Monterrey, Mexico. Atmos Environ 59:449–460

    Article  Google Scholar 

  • Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aerosol Sci 38:1079–1118

    Article  Google Scholar 

  • McLachlan MS (1996) Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environ Sci Technol 30:252–259

    Article  Google Scholar 

  • McLachlan MS, Welsch-Pausch K, Tolls J (1995) Field validation of a model of the uptake of gaseous SOC in Lolium multiflorum (Rue Grass). Environ Sci Technol 29:1998–2004

    Article  Google Scholar 

  • Nagendra SMS, Khare M (2002) Line source emission modeling. Atmos Environ 36:2083–2098

    Article  Google Scholar 

  • Olson DA, McDow SR (2009) Near roadway concentrations of organic source markers. Atmos Environ 43:2862–2867

    Article  Google Scholar 

  • Perrone MG, Carbone C, Faedo D, Ferrero L, Maggioni A, Sangiorgi G, Bolzacchini E (2014) Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmos Environ 82:391–400

    Article  Google Scholar 

  • Peters CA, Knightes CD, Brown DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33:4499–4507

    Article  Google Scholar 

  • Pulles T, van der Gon HD, Appelman W, Verheul M (2012) Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmos Environ 61:641–651

    Article  Google Scholar 

  • Rey MD, Font R, Aracil I (2014) PCDD/F emissions from light-duty diesel vehicles operated under highway conditions and a diesel-engine based power generator. J Hazard Mater 278:116–123

    Article  Google Scholar 

  • Rieder M (1990) Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model. Environ Sci Technol 24:829–837

    Article  Google Scholar 

  • Sahlodin AM, Sotudeh-Gharebagh R, Zhu Y (2007) Modeling of dispersion near roadways based on the vehicle-induced turbulence concept. Atmos Environ 41:92–102

    Article  Google Scholar 

  • Sandelin K, Backman R (1999) A simple two-reactor method for predicting distribution of trace elements in combustion systems. Environ Sci Technol 33:4508–4513

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Shen X, Zhao Y, Chen Z, Huang D (2013) Heterogeneous reactions of volatile organic compounds in the atmosphere. Atmos Environ 68:297–314

    Article  Google Scholar 

  • Shorshani MF, Seigneur C, Rehn LP, Chanut H, Pellan Y, Jaffrezo J, Charron A, André M (2015) Atmospheric dispersion modeling near a roadway under calm meteorological conditions. Transp Res D 34:137–154

    Article  Google Scholar 

  • Stockwell WR (1986) A homogeneous gas phase mechanism for use in a regional acid deposition model. Atmos Environ 20:1615–1632

    Article  Google Scholar 

  • Stockwell WR, Kirchner F, Kuhn M, Seefeld S (1997) A new mechanism for regional atmospheric chemistry modeling. J Geophys Res D 102:25847–25879

    Article  Google Scholar 

  • Szopa S, Aumont B, Madronich S (2005) Assessment of the reduction methods used to develop chemical schemes: building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HO x -NO x -VOC chemistry simulations. Atmos Chem Phys 5:2519–2538

    Article  Google Scholar 

  • Tsai J-H, Chang S-Y, Chiang H-L (2012) Volatile organic compounds from the exhaust of light-duty diesel vehicles. Atmos Environ 61:499–506

    Article  Google Scholar 

  • Tuppurainen K, Halonen I, Ruokojärvi P, Tarhanen J, Ruuskanen J (1998) Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review. Сhemosphere 36:1493–1511

    Article  Google Scholar 

  • Venkatram A, Snyder M, Isakov V (2013) Modeling the impact of roadway emissions in light wind, stable and transition conditions. Transp Res D 24:110–119

    Article  Google Scholar 

  • Wang J, Jin L, Gao J, Shi J, Zhao Y, Liu S, Jin T, Bai Z, C-Y W (2013) Investigation of speciated VOC in gasoline vehicular exhaust under ECE and EUDC test cycles. Sci Total Environ 445–446:110–116

    Article  Google Scholar 

  • Zhang Y, Wang X, Li G, Yang W, Huang Z, Zhang Z, Huang X, Deng W, Liu T, Huang Z, Zhang Z (2015) Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: recent tests in an urban tunnel in the Pearl River Delta, China. Atmos Environ 122:876–884

    Article  Google Scholar 

  • Zhong J, Cai XM, Bloss WJ (2016) Modeling photochemical pollutants in a deep urban street canyon: application of a coupled two-box model approximation. Atmos Environ 143:86–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Gerasimov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gerasimov, G. (2018). Dispersion, Photochemical Transformation, and Bioaccumulation of Pollutants in the Vicinity of Highway. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics