Skip to main content

Engineered Nanomaterials in the Environment, their Potential Fate and Behaviour and Emerging Techniques to Measure Them

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Abstract

After decades of research, nanoscience faces a historic moment: moving from fundamental research toward a publicly available technology, a turning point toward commercialization. Despite all perceived nanotechnology advantages, if their environmental impacts are not assessed in detail, this technology could adversely affect the environmental sustainability and health. Growing interests in manufacturing novel nanostructures and commercializing them is happening while there are major gaps in our understanding of their behavior in the environment. In this chapter, five of the most important nanomaterials, graphene, carbon nanotubes (CNTs), zinc oxides, titanium dioxide, and silver nanoparticles, have been briefly described. In addition, diffusive gradients in thin films (DGT) technique as an emerging method with the possibility of determining the readily available concentrations of metal oxide nanomaterials in soil and water has been mentioned.

This is a preview of subscription content, log in via an institution.

References

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide Nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  Google Scholar 

  • Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210

    Article  CAS  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science (80-. ) 339(6119):535–539

    Article  CAS  Google Scholar 

  • Di Bernardo A, Millo O, Barbone M, Alpern H, Kalcheim Y, Sassi U, Ott AK, De Fazio D, Yoon D, Amado M et al (2017) P-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor. Nat Commun 8:14024

    Article  Google Scholar 

  • Du J, Wang S, You H, Zhao X (2013) Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: a review. Environ Toxicol Pharmacol 36(2):451–462

    Article  CAS  Google Scholar 

  • Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  Google Scholar 

  • Goodwin CM, Lewis GG, Fiorella A, Ellison MD, Kohn R (2014) Synthesis and toxicity testing of cysteine-functionalized single-walled carbon nanotubes with Caenorhabditis elegans. RSC Adv 4(12):5893

    Article  CAS  Google Scholar 

  • Iijima S (1991) Sumio. Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Kongseng S, Yoovathaworn K, Wongprasert K, Chunhabundit R, Sukwong P, Pissuwan D (2016) Cytotoxic and inflammatory responses of TiO 2 nanoparticles on human peripheral blood mononuclear cells. J Appl Toxicol 36(10):1364–1373

    Article  CAS  Google Scholar 

  • López-Serrano A, Olivas RM, Landaluze JS, Cámara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6(1):38–56

    Article  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut 172:76–85

    Article  CAS  Google Scholar 

  • Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15(16):1596–1604

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  Google Scholar 

  • Pouran HM, Fotovat A, Haghnia G, Halajnia A, Chamsaz M (2008) A case study: chromium concentration and its species in a calcareous soil affected by leather industries effluents. World Appl Sci J 5(4):484–489

    Google Scholar 

  • Pouran HM, Llabjani V, Martin FL, Zhang H (2013) Evaluation of ATR-FTIR spectroscopy with multivariate analysis to study the binding mechanisms of ZnO nanoparticles or Zn to Chelex-100 or Metsorb. Env Sci Technol 47(19):11115–11121

    Article  CAS  Google Scholar 

  • Pouran HM, Banwart SASA, Romero-Gonzales M (2014a) Coating a polystyrene well-plate surface with synthetic hematite, goethite and aluminium hydroxide for cell mineral adhesion studies in a controlled environment. Appl Geochem 42(1986):60–68

    Article  CAS  Google Scholar 

  • Pouran HM, Martin FL, Zhang H (2014b) Measurement of ZnO nanoparticles using diffusive gradients in thin films: binding and diffusional characteristics. Anal Chem 86(12):5906–5913

    Article  CAS  Google Scholar 

  • Pouran HM, Banwart SA, Romero-Gonzalez M (2017) Effects of synthetic iron and aluminium oxide surface charge and hydrophobicity on the formation of bacterial biofilm. Environ Sci Process Impacts 19(4):622–634

    Article  CAS  Google Scholar 

  • Pourrahimi AM, Liu D, Ström V, Hedenqvist MS, Olsson RT, Gedde UW (2015) Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications. J Mater Chem A 3(33):17190–17200

    Article  CAS  Google Scholar 

  • Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS (2016) Toxicity of Nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res 172(1):1–36

    Article  CAS  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15

    Article  CAS  Google Scholar 

  • Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg W, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D et al (2009) Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–U78

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121–2134

    Article  CAS  Google Scholar 

  • Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 1459–1476

    Article  CAS  Google Scholar 

  • Zhang H, Davison W (2015) Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability. Environ Chem 12:85–101

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48(17):9995–10009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pouran, H.M. (2019). Engineered Nanomaterials in the Environment, their Potential Fate and Behaviour and Emerging Techniques to Measure Them. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_95-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_95-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Engineered Nanomaterials in the Environment, their Potential Fate and Behaviour and Emerging Techniques to Measure Them
    Published:
    15 October 2018

    DOI: https://doi.org/10.1007/978-3-319-58538-3_95-2

  2. Original

    Engineered Nanomaterials in the Environment, their Potential Fate and Behaviour and Emerging Techniques to Measure Them
    Published:
    31 December 2017

    DOI: https://doi.org/10.1007/978-3-319-58538-3_95-1