Skip to main content

Application of Novel Microbial Consortia for Environmental Site Remediation and Hazardous Waste Management Toward Low- and High-Density Polyethylene and Prioritizing the Cost-Effective, Eco-friendly, and Sustainable Biotechnological Intervention

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

Accumulation of plastics has been identified as one of the biggest threats to the ecosystem due to the non-biodegradability and persistence of polyethylene for extended period of time. Therefore, there is a high scope to manage the plastic waste by eco-friendly, cost-effective, and novel biotechnological approach. The current chapter focuses on the biodegradation of two forms of plastics, LDPE (low-density polyethylene) and HDPE (high-density polyethylene), by means of novel bacterial consortia screened from various sources. The chapter initially focuses on conventional methodologies available for plastic waste management, the merits and demerits of such technology, and need for novel biotechnological intervention. The chapter later progresses with various approaches used for formulating novel microbial consortia, the microbiology of important plastic-degrading bacteria and their screening techniques, recent protocols used for screening and characterization of plastic degradation bacteria, various techniques used for the biodegradation studies, role of ideal environmental parameters for effective degradation, mechanism of degradation of LDPE and HDPE by novel microbial consortia, the role of biofilm formation on plastic degradation, major biodegradation end products and approaches and techniques used for studying these end products, and recent advances in the preservation and environmental scale-up of novel plastic-degrading bacteria. The chapter finally illustrates the scope of enzyme technology, bioinformatics and computational biology, molecular modeling, and simulation aspects in biodegradation studies by novel microbial consortia. The concepts highlighted in this chapter certainly provide new dimensions and advancements in the field of environmental site remediation and hazardous waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. https://doi.org/10.1016/j.softx.2015.06.001

  • Al-Salem SM, Antelava A, Constantinou A, Manos G, Dutta A (2017) A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J Environ Manag 197:177–198

    Article  Google Scholar 

  • Anke B, Jan B, Raf D (2012) Recycling and recovery of post-consumer plastic solid waste in a European context. Therm Sci 16:669–685

    Article  Google Scholar 

  • Anwar MS, Negi H, Zaidi MGH, Gupta S, Goel R (2013) Biodeterioration studies of thermoplastics in nature using indigenous bacterial consortia. Braz Arch Biol Technol 56:475–484

    Article  Google Scholar 

  • Anwar MS, Kapri A, Chaudhry V, Mishra A, Ansari MW, Souche Y, Nautiyal CS, Zaidi MGH, Goel R (2016) Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride. Protoplasma 253(4):1023–1032

    Article  Google Scholar 

  • Arora PK, Bae H (2014) Integration of bioinformatics to biodegradation. Biol Proced Online. https://doi.org/10.1186/1480-9222-16-8

  • Ashworth DC, Elliott P, Toledano MB (2014) Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environ Int 69:120–132

    Article  Google Scholar 

  • ASTM (2009) Standard practice for determining resistance of synthetic polymeric materials to fungi. Am Soc Test Mater (ASTM):G21–G96

    Google Scholar 

  • ASTM (2011) Standard test method for determining anaerobic biodegradation of plastic materials under accelerated landfill conditions. American Society for Testing and Materials (ASTM): D5526–D5594

    Google Scholar 

  • Babu KN, Rajesh MK, Samsudeen K, Minoo D, Suraby EJ, Anupama K, Ritto P (2014) Randomly amplified polymorphic DNA (RAPD) and derived techniques. Methods Mol Biol 1115:191–209

    Article  Google Scholar 

  • Bailes G, Lind M, Ely A, Powell M, Moore-Kucera J, Miles C, Inglis D, Brodhagen M (2013) Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture. J Vis Exp 75:50373

    Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B, Ramesh N, Sumathi CS, Kottaimuthu R, Kannan VR (2010) High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211

    Google Scholar 

  • Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, Schmidt J, Zimmermann W (2016) A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J 11(8):1082–1087. https://doi.org/10.1002/biot.201600008

    Article  Google Scholar 

  • Basharat Z, Bibi M, Yasmin A (2017) Implications of molecular docking assay for bioremediation. Published in Handbook of research on inventive bioremediation techniques. https://doi.org/10.4018/978-1-5225-2325-3.ch002

  • Begum MA, Varalakshmi B, Umamagheswari K (2015) Biodegradation of polythene bag using bacteria isolated from soil. Int J Curr Microbiol App Sci 4(11):674–680

    Google Scholar 

  • Beloqui A, Baur S, Trouillet V, Welle A, Madsen J, Bastmeyer M, Delaittre G (2016) Single-molecule encapsulation: a straightforward route to highly stable and printable enzymes. Small 12(13):1716–1722

    Article  Google Scholar 

  • Beveridge TJ (2001) Use of the gram stain in microbiology. Biotech Histochem 76(3):111–118

    Article  Google Scholar 

  • Bhardwaj H, Gupta R, Tiwari A (2013) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ 21(2):575–579

    Article  Google Scholar 

  • Blum T, Kohlbacher O (2008) MetaRoute: fast search for relevant metabolic routes for interactive network navigation and visualization. Bioinformatics 24(18):2108–2109

    Article  Google Scholar 

  • Briassoulis D, Babou E, Hiskakis M, Kyrikou I (2015) Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions. Environ Sci Pollut Res Int 22(4):2584–2598

    Article  Google Scholar 

  • Brodhagen M, Peyron M, Miles C, Inglis DA (2015) Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99(3):1039–1056

    Article  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  Google Scholar 

  • Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158

    Article  Google Scholar 

  • Carbajosa G, Trigo A, Valencia A, Cases I (2009) Bionemo: molecular information on biodegradation metabolism. Nucleic Acids Res 37:D598–D602

    Article  Google Scholar 

  • Carbonell P, Parutto P, Herisson J, Pandit SB, Faulon JL (2014) XTMS: pathway design in an extended metabolic space. Nucleic Acids Res 42:W389–W394

    Article  Google Scholar 

  • Case DA, Cerutti DS, Cheatham TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San Francisco

    Google Scholar 

  • Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753

    Article  Google Scholar 

  • Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver DS, Karp PD (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480

    Article  Google Scholar 

  • Chakraborty J, Das S (2017) Application of spectroscopic techniques for monitoring microbial diversity and bioremediation. Appl Spectrosc Rev 52(1):1–38

    Article  Google Scholar 

  • Chen D, Yin L, Wang H, He P (2014) Pyrolysis technologies for municipal solid waste: a review. Waste Manag 34:2466–2486

    Article  Google Scholar 

  • Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspect. Biotechnol Adv 33:1443–1454

    Article  Google Scholar 

  • Chou CH, Chang WC, Chiu CM, Huang CC, Huang HD (2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 37:W129–W134

    Article  Google Scholar 

  • Ciesielski S, Bulkowska K, Dabrowska D, Kaczmarczyk D, Kowal P, Mozejko J (2013) Ribosomal intergenic spacer analysis as a tool for monitoring methanogenic archaea changes in an anaerobic digester. Curr Microbiol 67(2):240–248

    Article  Google Scholar 

  • Conesa JA, Font R, Marcilla A, Garcia AN (1994) Pyrolysis of polyethylene in a fluidized bed reactor. J Anal Appl Pyrolysis 8(6):1238–1246

    Google Scholar 

  • Cregut M, Bedas M, Durand MJ, Thouand G (2013) New insights into polyurethane biodegradation and realistic prospects for the development of a sustainable waste recycling process. Biotechnol Adv 31(8):1634–1647

    Article  Google Scholar 

  • da Luz JMR, Paes SA, Nunes MD, da Silva MCS, Kasuya MCM (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS One 8(8):69386

    Article  Google Scholar 

  • Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5(1):81–86

    Article  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97(2):561–571. https://doi.org/10.1007/s00253-012-4584-0

    Article  Google Scholar 

  • Datta S, Christena LR, Rajaram YR (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9

    Article  Google Scholar 

  • Dellagnezze BM, de Sousa GV, Martins LL, Domingos DF, Limache EE, de Vasconcellos SP, de Oliveira VM (2014) Bioremediation potential of microorganisms derived from petroleum reservoirs. Marine Poll Bull 89(1):191–200

    Article  Google Scholar 

  • Divyalakshmi S, Subhashini A (2016) Screening and isolation of polyethylene degrading bacteria from various soil environments. J Environ Sci Toxicol Food Technol 10(12):01–07

    Google Scholar 

  • Eibes G, Arca-Ramos A, Feijoo G, Lema JM, Moreira MT (2015) Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl Microbiol Biotechnol 99(21):8815–8829

    Article  Google Scholar 

  • Es I, Vieira JD, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082

    Article  Google Scholar 

  • Esmaeili A, Pourbabaee AA, Alikhani HA, Shabani F, Esmaeili E (2013) Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One 8(9):71720

    Article  Google Scholar 

  • Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421

    Article  Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104(6):1086–1097

    Article  Google Scholar 

  • Fisher AK, Freedman BG, Bevan DR, Senger RS (2014) A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput Struct Biotechnol J11(18):91–99

    Article  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196

    Article  Google Scholar 

  • Fulekar MH, Sharma J (2008) Bioinformatics applied in bioremediation. Innov Rom Food Biotechnol 3:28–36

    Google Scholar 

  • Gajendiran A, Krishnamoorthy S, Abraham J (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6(1):52

    Article  Google Scholar 

  • Gao J, Ellis LB, Wackett LP (2010) The university of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38:D488–D491

    Article  Google Scholar 

  • Ghosh SK, Pal S, Ray S (2013) Study of microbes having potentiality for biodegradation of plastics. Environ Sci Pollut Res 20:4339–4355

    Article  Google Scholar 

  • Gilan I, Sivan A (2013) Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiol Lett 342:18–23

    Article  Google Scholar 

  • Gonzalez-Ruiz A, Bendall RP (1995) Size matters: the use of the ocular micrometer in diagnostic parasitology. Parasitol Today 11(2):83–85

    Article  Google Scholar 

  • Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277

    Article  Google Scholar 

  • Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:69–91

    Article  Google Scholar 

  • Gupta S, Kaushal R (2015) Biodegradation of xenobiotic compounds. IJRSR 6(10):6960–6963

    Google Scholar 

  • Gupta P, Samant K, Sahu A (2012) Isolation of cellulose degrading bacteria and determination of their cellulolytic potential. Int J Microbiol 2012:578925. https://doi.org/10.1155/2012/578925

    Article  Google Scholar 

  • Gurtler V, Subrahmanyam G, Shekar M, Maiti B, Karunasagar I (2014) Bacterial typing and identification by genomic analysis of 16S–23S rRNA intergenic transcribed spacer (ITS) sequences. Methods Microbiol 41:253–274

    Article  Google Scholar 

  • Hajna AA (1945) Triple-sugar iron agar medium for the identification of the intestinal group of bacteria. J Bacteriol 49(5):516–517

    Google Scholar 

  • Hamad K, Kaseem M, Deri F (2013) Recycling of waste from polymer materials: an overview of the recent works. Polym Degrad Stab 98(12):2801–2812

    Article  Google Scholar 

  • Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21(8):1603–1609

    Article  Google Scholar 

  • Heath AP, Bennett GN, Kavraki LE (2010) Finding metabolic pathways using atom tracking. Bioinformatics 26(12):1548–1555

    Article  Google Scholar 

  • Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6(4):185–205

    Article  Google Scholar 

  • Houdt VR, Michiels CW (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. J Res Microbiol 156:626–633

    Article  Google Scholar 

  • Howard GT, Hilliard NP (1999) Use of coomassie blue-polyurethane interaction in detection of polyurethanease proteins and polyurethanolytic bacteria. Int Biodeterior Biodegrad 43:23–30

    Article  Google Scholar 

  • Huang Y, Zhong C, Lin HX, Wang J (2017) A method for finding metabolic pathways using atomic group tracking. PLoS One 12(1):e0168725. https://doi.org/10.1371/journal.pone.0168725

    Article  Google Scholar 

  • Hung LH, Ngan SC, Samudrala R (2007) De novo protein structure prediction. In: Xu Y, Xu D, Liang J (eds) Computational methods for protein structure prediction and modeling. Biological and medical physics, biomedical engineering. Springer, New York

    Google Scholar 

  • Ignatyev IA, Thielemans W, Beke BV (2014) Recycling of polymers: a review. ChemSusChem 7(6):1579–1593

    Article  Google Scholar 

  • Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Eng 54(11):3210–3215

    Article  Google Scholar 

  • Joshi SJ, Al-Wahaibi YM, Al-Bahry SN, Elshafie AE, Al-Bemani AS, Al-Bahri A, Al-Mandhari MSV (2016) Production, characterization, and application of bacillus licheniformis W16 biosurfactant in enhancing oil recovery. Front Microbiol 7:1853

    Google Scholar 

  • Jurtshuk P Jr, McQuitty DN (1976) Use of a quantitative oxidase test for characterizing oxidative metabolism in bacteria. Appl Environ Microbiol 31(5):668–679

    Google Scholar 

  • Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: a review. J Biochem Technol 6(1):952–961

    Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187. https://doi.org/10.4061/2011/805187

    Article  Google Scholar 

  • Karp PD, Weaver D, Paley S, Fulcher C, Kubo A, Kothari A, Krummenacker M, Subhraveti P, Weerasinghe D, Gama-Castro D, Huerta AM, Muniz-Rascado L, Bonavides-Martinez C, Weiss V, Peralta-Gil M, Santos-Zavaleta A, Schroder I, Mackie A, Gunsalus R, Collado-Vides J, Keseler IM, Paulsen I (2014) The EcoCyc database. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0009-2014

  • Karp PD, Billington R, Holland TA, Kothari A, Krummenacker M, Weaver D, Latendresse M, Paley S (2015) Computational metabolomics operations at BioCyc.org. Metabolites 5(2):291–310

    Article  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  Google Scholar 

  • Khan F, Sajid M, Cameotra SS (2013) In silico approach for the bioremediation of toxic pollutants. J Pet Environ Biotechnol 4:161

    Article  Google Scholar 

  • Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874

    Article  Google Scholar 

  • Kull K (2010) Ecosystems are made of semiosic bonds: consortia, umwelten, biophony and ecological codes. Biosemiotics 3(3):347–357

    Article  Google Scholar 

  • Kuwahara H, Alazmi M, Cui X, Gao X (2016) MRE: a web tool to suggest foreign enzymes for the biosynthesis pathway design with competing endogenous reactions in mind. Nucleic Acids Res 44(W1):W217–W225

    Article  Google Scholar 

  • Kyrikou I, Briassoulis ED (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Eng 15(2):125–150

    Article  Google Scholar 

  • Lam SS, Liew RK, Jusoh A, Chong CT, Ani FN, Chase HA (2016) Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew Sust Energ Rev 53:741–753

    Article  Google Scholar 

  • Lapage S, Shelton J, Mitchell T, Norris J, Ribbons D (eds) (1970) Methods in microbiology, vol 3A. Academic, London

    Google Scholar 

  • Law KL, Thompson RC (2014) Microplastics in the seas. Science 345(6193):144–145

    Article  Google Scholar 

  • Lee YJ, Kim KS, Kwon YK, Tak RB (2003) Biochemical characteristics and antimicrobials susceptibility of Salmonella gallinarum isolated in Korea. J Vet Sci 4(2):161–166

    Google Scholar 

  • Lee J, Wu S, Zhang Y (2009) Ab initio protein structure prediction. In: Rigden DJ (ed) From protein structure to function with bioinformatics. Springer, Dordrecht

    Google Scholar 

  • Le-Roes-Hill M, Prins A (2016) Biotechnological potential of oxidative enzymes from Actinobacteria. https://doi.org/10.5772/61321

  • Li N, Kang Y, Pan W, Zeng L, Zhang Q, Luo J (2015) Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci Total Environ 521–522:144–151

    Article  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78(8):1950–1958

    Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73(4):429–442

    Article  Google Scholar 

  • Luckachan GE, Pillai CKS (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    Article  Google Scholar 

  • Masoner JR, Kolpin DW, Furlong ET, Cozzarelli IM, Gray JL, Schwab EA (2014) Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environ Sci Process Impacts 16(10):2335–2354

    Article  Google Scholar 

  • Masoner JR, Kolpin DW, Furlong ET, Cozzarelli IM, Gray JL, Schwab EA (2016) Landfill leachate as a mirror of today’s disposable society: pharmaceuticals and other contaminants of emerging concern in final leachate from landfills in the conterminous United States. Environ Toxicol Chem 35(4):906–918

    Article  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40(6):1451–1463

    Article  Google Scholar 

  • Maya DMY, Sarmiento ALE, de Sales OCAVB, Lora EES, Andrade RV (2016) Gasification of municipal solid waste for power generation in Brazil, a review of available technologies and their environmental benefits. J Chem 10:249–255

    Google Scholar 

  • McClymont K, Soyer OS (2013) Metabolic tinker: an online tool for guiding the design of synthetic metabolic pathways. Nucleic Acids Res 41(11):e113

    Article  Google Scholar 

  • Meier A, Söding J (2015) Automatic prediction of protein 3D structures by probabilistic multi-template homology modeling. PLoS Comput Biol 11(10):e1004343

    Article  Google Scholar 

  • Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS (2016) Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot 102:822–838

    Article  Google Scholar 

  • Midolo P, Marshall BJ (2000) Accurate diagnosis of Helicobacter pylori. Gastroenterol Clin N Am 29(4):871–878

    Article  Google Scholar 

  • Mohamad NR, Marzuki NH, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29(2):205–220

    Article  Google Scholar 

  • Mohan KS, Srivastava T (2010) Microbial deterioration and degradation of polymeric materials. J Biochem Technol 2(4):210–215

    Google Scholar 

  • Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber: biodegradation of polystyrene. Biodegradation 19(6):851–858

    Article  Google Scholar 

  • Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38:W138–W143

    Article  Google Scholar 

  • Muenmee S, Chiemchaisri W, Chiemchaisri C (2015) Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeterior Biodegrad 102:172–181

    Article  Google Scholar 

  • Muenmee S, Chiemchaisria W, Chiemchaisria C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255

    Article  Google Scholar 

  • Muto A, Kotera M, Tokimatsu T, Nakagawa Z, Goto S, Kanehisa M (2013) Modular architecture of metabolic pathways revealed by conserved sequences of reactions. J Chem Inf Model 53(3):613–622

    Article  Google Scholar 

  • Nabavi-Pelesaraei AN, Bayat R, Hosseinzadeh-Bandbafha H, Afrasyabi H, Chau KW (2017) Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management – a case study in Tehran metropolis of Iran. J Clean Prod 148:427–440

    Article  Google Scholar 

  • Nikolaivits E, Dimarogona M, Fokialakis N, Topakas E (2017) Marine-derived biocatalysts: importance, accessing, and application in aromatic pollutant bioremediation. Front Microbiol 8:265

    Article  Google Scholar 

  • North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28(1):1–8

    Article  Google Scholar 

  • Oh M, Yamada T, Hattori M, Goto S, Kanehisa M (2007) Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J Chem Inf Model 47(4):1702–1712

    Article  Google Scholar 

  • Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Khatua P, Rai V, Bose S (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:39515

    Article  Google Scholar 

  • Orr IG, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65(1):97–104

    Google Scholar 

  • Paco A, Duarte K, da Costa JP, Santos PS, Pereira R, Pereira ME, Freitas AC, Duarte AC, Rocha-Santos TA (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15

    Article  Google Scholar 

  • Patel A, Harris KA, Fitzgerald F (2017) What is broad-range 16S rDNA PCR? Arch Dis Child Educ Pract Ed. https://doi.org/10.1136/archdischild-2016-312049

  • Patowary K, Patowary R, Kalita MC, Deka S (2016) Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol 7:1092

    Article  Google Scholar 

  • Pazos F, Guijas D, Valencia A, De-Lorenzo V (2005) MetaRouter: bioinformatics for bioremediation. Nucleic Acids Res 33:D588–D592

    Article  Google Scholar 

  • Peixoto J, Silva LP, Kruger RH (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard Mater 324(Pt B):634–644

    Article  Google Scholar 

  • Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78

    Article  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  Google Scholar 

  • Pramila R, Ramesh KV (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. Afr J Microbiol Res 7(3):24–28

    Google Scholar 

  • Quecholac-Piña X, García-Rivera MA, Espinosa-Valdemar RM, Vázquez-Morillas A, Beltrán-Villavicencio M, Cisneros-Ramos AL (2016) Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-016-6553-0

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353

    Article  Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23(6):917–926

    Article  Google Scholar 

  • Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD (2004) Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. https://doi.org/10.1186/gb-2004-6-1-r2

  • Roy PK, Titus S, Surekha P, Tulsi E, Deshmukh C, Rajagopal C (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93(10):1917–1922

    Article  Google Scholar 

  • Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Immobilization of Pseudomonas cepacia lipase onto electrospunpolyacrylonitrile fibers through physical adsorption and application to transesterification in nonaqueous solvent. Biotechnol Lett 32:1059–1062

    Article  Google Scholar 

  • Saleem J, Ning C, Barford J, McKay G (2015) Combating oil spill problem using plastic waste. Waste Manag 44:34–38

    Article  Google Scholar 

  • Salsbury FR Jr (2010) Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 10(6):738–744

    Article  Google Scholar 

  • Sangeetha BG, Jayaprakas CA, Siji JV, Rajitha M, Shyni B, Mohandas C (2016a) Molecular characterization and amplified ribosomal DNA restriction analysis of entomopathogenic bacteria associated with Rhabditis (Oscheius) spp. 3 Biotech 6(1):32

    Article  Google Scholar 

  • Sangeetha R, Kannan VR, Natrajan K, Antony RA (2016b) The role of microbes in plastic degradation. In: Environmental Waste Management Chapter 12, Ram Chandra (eds) https://doi.org/10.1201/b19243-13

  • Sanni O, Chang CY, Anderson DG, Langer B, Davies MC, Williams PM, Williams P, Alexander MR, Hook AL (2015) Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity. Adv Healthc Mater 4:695–701

    Article  Google Scholar 

  • Satlewal A, Soni R, Zaidi M, Shouche Y, Goel R (2008) Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium. J Microbiol Biotechnol 18(3):477–482

    Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  Google Scholar 

  • Sen SK, Raut S (2015) Microbial degradation of low density polyethylene (LDPE): a review. JECE 3(1):462–473

    Google Scholar 

  • Shah MP (2017) Prokaryotes: a promising agent in environmental bioremediation. Adv Recycling Waste Manag 2:e103

    Article  Google Scholar 

  • Shah Z, Krumholz L, Aktas DF, Hasan F, Khattak M, Shah AA (2013) Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Biodegradation 24:865–877

    Article  Google Scholar 

  • Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326

    Article  Google Scholar 

  • Shittu A, Lin J, Morrison D, Kolawole D (2006) Identification and molecular characterization of mannitol salt positive, coagulase-negative staphylococci from nasal samples of medical personnel and students. J Med Microbiol 55(3):317–324

    Article  Google Scholar 

  • Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2016a) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B 115:409–422

    Article  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016b) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174

    Article  Google Scholar 

  • Sirisha VL, Jain A, Jain A (2016) Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res 79:179–211

    Article  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72(2):346–352

    Article  Google Scholar 

  • Skariyachan S, Megha M, Kini MN, Mukund KM, Rizvi A, Vasist K (2015) Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India. Environ Monit Assess 187(1):4174

    Article  Google Scholar 

  • Skariyachan S, Manjunatha V, Sultana S, Jois C, Bai V, Vasist KS (2016) Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environ Sci Pollut Res Int 23(18):18307–18319

    Article  Google Scholar 

  • Skariyachan S, Setlur AS, Naik SY, Naik AA, Usharani M, Vasist KS (2017) Enhanced biodegradation of low and high-density polyethylene by novel bacterial consortia formulated from plastic-contaminated cow dung under thermophilic conditions. Environ Sci Pollut Res Int 24(9):8443–8457

    Article  Google Scholar 

  • Soh KC, Hatzimanikatis V (2010) Dreams of metabolism. Trends Biotechnol 28(10):501–508

    Article  Google Scholar 

  • Taylor WI, Achanzar D (1972) Catalase test as an aid to the identification of Enterobacteriaceae. Appl Microbiol 24(1):58–61

    Google Scholar 

  • Teeraphatpornchai T, Nakajima-Kamber T, Shigeno-Akutsu Y, Nakayama M, Nomura N, Nakahara T, Uchiyama H (2003) Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics. Biotechnol Lett 25(1):23–28

    Article  Google Scholar 

  • Titters RR, Sancholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31:575–580

    Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  Google Scholar 

  • Tribedi P, Sil AK (2013) Low-density polyethylene degradation by Pseudomonas spp AKS2 biofilm. Environ Sci Pollut Res 20:4146–4153

    Article  Google Scholar 

  • Tribedi P, Sarkar S, Mukherjee K, Sil AK (2012) Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate. Environ Sci Pollut Res Int 19(6):2115–2124

    Article  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Google Scholar 

  • Ulrici A, Serranti S, Ferrari C, Cesare D, Foca G, Bonifazi G (2013) Efficient chemometric strategies for PET–PLA discrimination in recycling plants using hyperspectral imaging. Chemom Intell Lab Syst 122:31–39

    Article  Google Scholar 

  • Vieira AC, Marschalk C, Biavatti DC, Lorscheider CA, Peralta RM, Seixas FA (2015) Modeling based structural insights into biodegradation of the herbicide diuron by laccase-1 from Ceriporiopsis subvermispora. Bioinformation 11(5):224–228

    Article  Google Scholar 

  • van der Zee M (2011) Analytical methods for monitoring biodegradation processes of environmentally degradable polymers. Handb Biodegradable Polym:263–281

    Google Scholar 

  • van Cauwenberghe L, Vanreusel A, Mees J, Janssen CR (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Article  Google Scholar 

  • Wan S, Sun L, Douieb Y, Sun J, Luo W (2013) Anaerobic digester of municipal solid waste composed of food waste, waste paper and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour Technol 146:619–627

    Article  Google Scholar 

  • Wang J, Zhang G (2015) Progress in co-immobilization of multiple enzymes. Sheng Wu Gong Cheng Xue Bao 31(4):469–480

    Google Scholar 

  • Wang CQ, Wang H, Liu YN (2014) Separation of polyethylene terephthalate from municipal solid waste plastics by froth flotation for recycling industry. Waste Manag 35:42–47

    Article  Google Scholar 

  • Wang CQ, Wang H, Fu JG, Liu YN (2015) Flotation separation of waste plastics for recycling-a review. Waste Manag 41:28–38

    Article  Google Scholar 

  • Webb B, Sali A (2016) Comparative protein structure modeling using modeller. Curr Protoc Protein Sci. https://doi.org/10.1002/cpps.20

  • Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol. https://doi.org/10.1111/1751-7915.12710

  • Whaley DN, Dowell VR Jr, Wanderlinder LM, Lombard GL (1982) Gelatin agar medium for detecting gelatinase production by anaerobic bacteria. J Clin Microbiol 16(2):224–229

    Google Scholar 

  • Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas spp.: capabilities and challenges. J Appl Microbiol. https://doi.org/10.1111/jam.13472

  • Wu G, Li J, Xu Z (2012) Triboelectrostatic separation for granular plastic waste recycling: a review. Waste Manag 33:585–597

    Article  Google Scholar 

  • Xia D, Zheng H, Liu Z, Li G, Li J, Hong J, Zhao K (2011) MRSD: a web server for metabolic route search and design. Bioinformatics 27(11):1581–1582

    Article  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium Simplicissimum YK. Polym Degrad Stab 72(2):323–327

    Article  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jian L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015a) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8

    Article  Google Scholar 

  • Yang Y, Yang J, Wu W, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol. https://doi.org/10.1021/acs.est.5b02663

  • Yates MR, Barlow CY (2013) Life cycle assessments of biodegradable, commercial biopolymers – a critical review. Resour Conserv Recycl 78:54–66

    Article  Google Scholar 

  • Zhu Y, Zhang Y, Ren HQ, Geng JJ, Xu K, Huang H, Ding LL (2015) Physiochemical characteristics and microbial community evolution of biofilm during start-up period in a moving bed reactor. Bioresour Technol 180:345–351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinosh Skariyachan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skariyachan, S., Manjunath, M., Shankar, A., Bachappanavar, N., Patil, A.A. (2018). Application of Novel Microbial Consortia for Environmental Site Remediation and Hazardous Waste Management Toward Low- and High-Density Polyethylene and Prioritizing the Cost-Effective, Eco-friendly, and Sustainable Biotechnological Intervention. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics