Skip to main content

Actinide Speciation in Environment and Their Separation Using Functionalized Nanomaterials and Nanocomposites

  • Living reference work entry
  • First Online:

Abstract

Actinides are the major and most important environmental contaminants associated with anthropogenic activities such as mining and milling of uranium ores, and generation of nuclear energy resulting in the production of nuclear reactor wastes. These actinides have greater migrating ability in aquifer systems. But actinides in aqueous environment exhibit an inordinately complex chemistry. As a result, the chemical interactions of actinides in the environment are difficult to understand unless a detailed knowledge on their chemical speciation, oxidation state, redox reactions, sorption characteristics, temperature and pressure profiles, pH, and redox potential (Eh) is available. The solubility and migration behavior are also related to these factors. To predict how an actinide might spread through the environment and how fast that transport might occur, we need to characterize all local conditions, including the nature of site-specific minerals, and ligand concentrations. A quantitative knowledge of the competing geochemical processes that affect the actinide’s behavior is also mandatory. Once actinides enter the environment; they pose major risk and hence safe management of radioactive waste with minimum impact to environment gains major importance in addition to speciation of actinides in environment. The major aim of radioactive waste management is to identify the chemical form of long-lived alpha-emitting radionuclide species spread in the environment and to separate them. Functional nonmaterial has gained wide attention and its increasing advancements in multidisciplinary research will make it a good candidate for separation of radionuclides. It is mainly because of their unique structure and exceptional properties. In this chapter, we discuss in detail the basic research progress in the speciation studies and separation of actinides in environment with the emphasis on application of functionalized nanomaterials and nanocomposites for the separation of radionuclides from the environment.

This is a preview of subscription content, log in via an institution.

References

  • Abdeen Z, Akl ZF (2015) Uranium(VI) adsorption from aqueous solutions using poly(vinyl alcohol)/carbon nanotube composites. RSC Adv 5:74220–74229

    Article  Google Scholar 

  • Altmaier M, Gaona X, Fanghanel T (2013) Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev 113:901–943

    Article  Google Scholar 

  • Arkas M, Tsiourvas D, Paleos CM (2003) Functional dendrimeric “Nanosponges” for the removal of polycyclic aromatic hydrocarbons from water. Chem Mater 15:2844–2847

    Article  Google Scholar 

  • Bacon WE, Brown GH (1969) X-ray diffraction studies of mono- and polynuclear Th(IV) ions in aqueous perchlorate solutions. J Phys Chem 73:4163–4166

    Article  Google Scholar 

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  • Baes CF Jr, Mesmer RE (1981) The thermodynamics of cation hydrolysis. Am J Sci 281:935–962

    Article  Google Scholar 

  • Bai ZJ, Li C, Wang ZL et al (2014) Interactions Z. Q. between Th(IV) and graphene oxide: experimental and density functional theoretical investigations. RSC Adv 4:3340–3347

    Article  Google Scholar 

  • Bell JT, Friedman HF (1976) Photochemical reactions of aqueous plutonium systems. J Inorg Nucl Chem 38:831–835

    Article  Google Scholar 

  • Bell JT, Coleman CF, Costanzo DA, Biggers RE (1973) Plutonium polymerization – II kinetics of the plutonium polymerization. J Inorg Nucl Chem 35:623–628

    Article  Google Scholar 

  • Belloni F, Kuetahyali C, Rondinella VV et al (2009) Can carbon nanotubes play a role in the field of nuclear waste management? Environ Sci Technol 43:1250

    Article  Google Scholar 

  • Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634

    Article  Google Scholar 

  • Bitea C, Muller R, Neck V, Walther C, Kim JI (2003a) Study of the generation and stability of thorium(IV) colloids by LIBD combined with ultrafiltration. Colloids Surf A Physicochem Eng Asp 217:63–70

    Article  Google Scholar 

  • Bitea C, Walther C, Yun JI, Marquardt C, Seibert A, Neck V, Fanghanel T, Kim JI (2003b) A study of colloid generation and disproportionation of Pu(IV) in aquatic solutions by LIBD and LPAS. AIP Conf Proc 673:26

    Article  Google Scholar 

  • Branger C, Meouche W, Margaillan A (2013) Recent advances on ion-imprinted polymers. React Funct Polym 73:859–875

    Article  Google Scholar 

  • Brooker MH, Huang CH, Sylwestriwicz J (1979) Raman spectroscopic studies of aqueous uranyl nitrate and perchlorate systems. J Inorg Nucl Chem 42:1431–1440

    Article  Google Scholar 

  • Brunstad A (1959) Polymerization and precipitation of plutonium(IV) in nitric acid. Ind Eng Chem 51:38–40

    Article  Google Scholar 

  • Bundschuh T, Knopp R, Muller R, Kim JI, Neck V, Fanghanel T (2000) Application of LIBD to the determination of the solubility product of thorium(IV)-colloids. Radiochim Acta 88:625–629

    Article  Google Scholar 

  • Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39

    Article  Google Scholar 

  • Carboni M, Abney CW, Kathryn ML et al (2013) Uranium sorption with functionalized mesoporous carbon materials. Ind Eng Chem Res 52(43):15187–15197

    Article  Google Scholar 

  • Chaiko DJ (1992) Partitioning of polymeric Pu(IV) in winsor II microemulsion systems. Sep Sci Technol 27:1389–1405

    Article  Google Scholar 

  • Chen CL, Li XL, Wang XK (2007a) Application of oxidized multiwall carbon nanotubes for Th(IV) adsorption. Radiochim Acta 95:261–266

    Article  Google Scholar 

  • Chen CL, Li XL, Zhao DL et al (2007b) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids Surf A Physicochem Eng Asp 302:449–454

    Article  Google Scholar 

  • Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  Google Scholar 

  • Chen L, Xu J, Hu J (2013a) Removal of U(VI) from aqueous solutions by using attapulgite/iron oxide magnetic nanocomposites. J Radioanal Nucl Chem 297:97–105

    Article  Google Scholar 

  • Chen SP, Hong X, Yang HX (2013b) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258

    Article  Google Scholar 

  • Chen H, Sha D, Li J et al (2014) The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chem Eng J 254:623–634

    Article  Google Scholar 

  • Cheng HX, Zeng KF, Yu JT (2013) Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite. J Radioanal Nucl Chem 298:599–603

    Article  Google Scholar 

  • Choppin GR (1983) Solution chemistry of the actinides. Radiochim Acta 32:43–53

    Article  Google Scholar 

  • Choppin GR (1999) Utility of oxidation state analogs in the study of plutonium behavior. Radiochim Acta 85:89–96

    Google Scholar 

  • Clark DL (2000) The chemical complexities of plutonium. Los Alamos Sci 26:364–381

    Google Scholar 

  • Clark DL, Conradson SD, Donohoe RJ, Webster Keogh D, Morris DE, Palmer PD, Rogers RD, Drew Tait C (1999) Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures and oxo ligand exchange dynamics. Inorg Chem 38:1456–1466

    Article  Google Scholar 

  • Clark DL, Hecker SS, Jarvinen GD, Neu MP (2006) Plutonium. The chemistry of actinide and transactinide elements. Springer, Heidelberg

    Google Scholar 

  • Cleveland JM (1967) Solution chemistry of plutonium in plutonium handbook. Gordon and Breach, New York

    Google Scholar 

  • Cleveland JM (1970) The chemistry of actinide and transactinide elements. Gordon and Breach, New York

    Google Scholar 

  • Cornelis R, Caruso J et al (eds) (2005) Handbook of elemental speciation II – species in the environment, food, medicine and occupational health. Wiley, Sussex

    Google Scholar 

  • Costanzo DA, Biggers RE (1963) A study of the Polymerization, depolymerization and precipitation of tetravalent Plutonium as functions of temperature and acidity by spectrophotometric methods. USAEC report ORNL-TM-585

    Google Scholar 

  • Costanzo DA, Biggers RE, Bell JT (1973) Plutonium polymerization-I. A spectrophotometric study of the polymerization of plutonium(IV). J Inorg Nucl Chem 35:609–622

    Article  Google Scholar 

  • Darmstadt H, Roy C, Kaliaguine S et al (2003) Surface and pore structures of CMK-5 ordered mesoporous carbons by adsorption and surface spectroscopy. Chem Mater 15(17):3300–3307

    Article  Google Scholar 

  • Dash A, Chakravarty R (2017) Nanomaterial-based adsorbent: promises, opportunities, and challenges to develop column chromatography radionuclide generators for nuclear medicine. Sep Purif Rev 46:91–107

    Article  Google Scholar 

  • Deb AKS, Ilaiyaraja P, Ponraju D et al (2012) Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291:877–883

    Article  Google Scholar 

  • Deb AKS, Mohanty BN, Ilaiyaraja P et al (2013) Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes. J Radioanal Nucl Chem 295:1161–1169

    Article  Google Scholar 

  • Diallo MS (2006) Water treatment by dendrimer enhanced filtration Patent:US20060021938 A1

    Google Scholar 

  • Diallo MS, Arasho W, Johnson JH et al (2008) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 42:1572–1579

    Article  Google Scholar 

  • Diallo MS, Frechet J, Boz E (2009) Extraction of actinides from mixtures and ores using dendritic macromolecules. Patent: US20090001802 A1

    Google Scholar 

  • Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  • Du Y, Qiu W, Lv Y et al (2016) Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry. ACS Appl Mater Interfaces 8:29696–29704

    Article  Google Scholar 

  • Ekberg C, Albinsson Y, Comarmand MJ, Brown PL (2000) Studies on the complexation behaviour of thorium(IV). 1. Hydrolysis equilibria. J Solut Chem 29:63–86

    Article  Google Scholar 

  • Ekberg C, Larsson K, Skarnemark G, Odegaard-Jensen A, Persson I (2013) The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions. Dalton Trans 42:2035–2040

    Article  Google Scholar 

  • Eliet V, Bidoglio G (1998) Kinetics of the laser-induced photoreduction of U(VI) in aqueous suspensions of TiO2 particles. Environ Sci Technol 32:3155–3161

    Article  Google Scholar 

  • Eliet V, Grenthe I, Bidoglio G (2000) Time-resolved laser-induced fluorescence of uranium(VI) hydroxo-complexes at different temperatures. Appl Spectrosc 54:99–105

    Article  Google Scholar 

  • El-Maghrabi HH, Abdelmaged SM, Nada AA et al (2017) Magnetic grapheme based nanocomposite for uranium scavenging. J Hazard Mater 322:370–379

    Article  Google Scholar 

  • Ermolaev VM, Zakharova EV, Shilov VP (2001) Depolymerization of Pu(IV) polymer in 0.5–3 M HNO3 in the presence of reductants and oxidants. Radiochemistry 43:424–428

    Article  Google Scholar 

  • Fanghanel T, Neck V (2002) Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl Chem 74:1895–1907

    Article  Google Scholar 

  • Fournel B, Barre Y, Lepeytre C et al (2012) Decontamination of nuclear liquid wastes – status of CEA and AREVA &D: application to Fukushima Waste Waters. In: Waste Mana, Phoenix

    Google Scholar 

  • Friedman HA, Toth LM, Bell JT (1977) Photochemical reactions of aqueous plutonium systems-II. J Inorg Nucl Chem 39:123–126

    Article  Google Scholar 

  • Fryxell G, Liu J, Mattigod S (1999) Self-assembled monolayers on mesoporous supports (SAMMS) – an innovative environmental sorbent. Mater Technol Adv Perform Mater 14(4):183–193

    Google Scholar 

  • Fryxell GE, Lin Y, Fiskum S et al (2005) Actinide sequestration using self-assembled monolayers on mesoporous supports. Environ Sci Technol 39:1324–1331

    Article  Google Scholar 

  • Fu J, Chen L, Li J et al (2015) Current status and challenges of ion imprinting. J Mater Chem A 3:13598–13627

    Article  Google Scholar 

  • Gadly T, Mohapatra PK, Patre DK et al (2017) Superparamagnetic graphene oxide-magnetite nanoparticle composites for uptake of actinide ions from mildly acidic feeds. J Chromatogr A 1513:18–26

    Article  Google Scholar 

  • Gao Y, Zhao J, Zhang G et al (2004) Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process. Sep Purif Technol 40:183–189

    Article  Google Scholar 

  • Gao B, Gao Y, Li Y (2010) Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions. Chem Eng J 158:542–549

    Article  Google Scholar 

  • Garrett L (1990) Reverse osmosis applications to low level radioactive wastes. WHC-SA- 0993; CONF-9010202-1

    Google Scholar 

  • Ghasemi M, Keshtkar AR, Dabbagh R et al (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. J Hazard Mater 189:141–149

    Article  Google Scholar 

  • Grenthe I, Puigdomenech I (1997) Modelling in aquatic chemistry. OECD/NEA, Paris

    Google Scholar 

  • Guillaumont R, Fanghanel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, chemical thermodynamics. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Gupta NK, Sengupta A, Biswas S (2017a) Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium. Radiochim Acta 105(9):689–697

    Article  Google Scholar 

  • Gupta NK, Sengupta A, Rane VG et al (2017b) Amide-mediated enhancement of sorption efficiency of trivalent f-elements on functionalized carbon nanotube: evidence of physisorption. Sep Sci Technol 52(13):2049–2061

    Article  Google Scholar 

  • Haire RG, Lloyd MH, Beasley ML, Milligan WO (1971) Aging of hydrous plutonium dioxide. J Electron Microsc 20:8–16

    Google Scholar 

  • Han H, Johnson A, Kaczor J et al (2010) Silica coated magnetic nanoparticles for separation of nuclear acidic waste. J Appl Phys 107:09B520

    Article  Google Scholar 

  • Henry M, Jolivet JP, Jacques L (1992) Aqueous chemistry of metal cations: hydrolysis, condensation and complexation. In: Chemistry, spectroscopy and applications of sol-gel glasses. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hsiue GH, Pung LS, Chu ML et al (1989) Treatment of uranium effluent by reverse osmosis membrane. Desalination 71:35–44

    Article  Google Scholar 

  • Hu R, Shao D, Wang X (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polym Chem 5:6207–6215

    Article  Google Scholar 

  • Hunter D, Ross DS (1991) Evidence for a phytotoxic hydroxyl-aluminum polymer in organic soil horizons. Science 251:1056–1058

    Article  Google Scholar 

  • Ilaiyaraja P, Deb AKS, Ponraju D (2014) Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF). J Radioanal Nucl Chem 303:441–450

    Article  Google Scholar 

  • Kaur M, Zhang H, Martin L et al (2013a) Conjugates of magnetic nanoparticle actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959

    Article  Google Scholar 

  • Kaur M, Johnson A, Tian G et al (2013b) Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2:124–132

    Article  Google Scholar 

  • Kedari CS, Pandit SS, Tripathi SC (2009) Extraction of Am(III) from aqueous nitrate solutions into micellar pseudo phase of anionic or non-ionic surfactant and separation by ultrafiltration. J Membr Sci 341:122–130

    Article  Google Scholar 

  • Khazaei Y, Faghihian H, Kamali M (2011) Removal of thorium from aqueous solutions by sodium clinoptilolite. J Radioanal Nucl Chem 289:529–536

    Article  Google Scholar 

  • Khedr MG (2013) Radioactive contamination of groundwater, special aspects and advantages of removal by reverse osmosis and nanofiltration. Desalination 321:47–54

    Article  Google Scholar 

  • Kim JI, Kanellakopulos B (1989) Solubility products of plutonium(IV) oxide and hydroxide. Radiochim Acta 48:145–150

    Google Scholar 

  • Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2004) Speciation study on uranium(VI) hydrolysis at high temperatures and pressures. J Alloys Compd 374:277–282

    Article  Google Scholar 

  • Knope KE, Soderholm L (2013a) Plutonium (IV) cluster with a hexanuclear [Pu6(OH)4O4]12+ core. Inorg Chem 52:6770–6772

    Article  Google Scholar 

  • Knope KE, Soderholm L (2013b) Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem Rev 113:944–994

    Article  Google Scholar 

  • Knope KE, Wilson RE, Vasiliu M, Dixon DA, Soderholm L (2011) Thorium(IV) molecular clusters with hexanuclear Th core. Inorg Chem 50:9696–9704

    Article  Google Scholar 

  • Knope KE, Vasiliu M, Dixon DA, Soderholm L (2012) Thorium(IV)-Selenate clusters containing an octanuclear Th(IV) hydroxide/oxide core. Inorg Chem 51:4239–4249

    Article  Google Scholar 

  • Kukowska-Latallo JF, Bielinska AU, Johnson J et al (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci U S A 93:4897–4902

    Article  Google Scholar 

  • Kumar S, Koganti SB (1997) A numerical model for prediction of boundary acid concentration for prevention of polymerization at macro Pu concentrations. J Nucl Sci Technol 34:1027–1028

    Article  Google Scholar 

  • Kumar P, Sengupta A, Deb AKS et al (2017) Poly(amidoamine) dendrimer functionalized carbon nanotube for efficient sorption of trivalent f-elements: a comparison between 1st and 2nd generation. Chem Select 2:975–985

    Google Scholar 

  • Lee JF, Thirumavalavan M, Wang YT et al (2011) Monitoring of the structure of mesoporous silica materials tailored using different organic templates and their effect on the adsorption of heavy metal ions. J Phys Chem C 115:8165

    Article  Google Scholar 

  • Lemire RJ, Fuger J, Nitsche H, Potter P, Rand MH, Rydberg J, Spahiu K, Sullivan JC, Ullman WJ, Vitorge P, Wanner H (2001) Chemical thermodynamics of neptunium and plutonium, Vol. 4 of chemical thermodynamics. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Li SJ, Tian G, Geng JX et al (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450

    Article  Google Scholar 

  • Li S, Bai H, Wang J et al (2012) In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chem Eng J 193–194:372–380

    Article  Google Scholar 

  • Lin Y, Fiskum SK, Yantasee W et al (2005) Incorporation of hydroxypyridinone ligands into self-assembled monolayers on mesoporous supports for selective actinide sequestration. Environ Sci Technol 39:1332–1337

    Article  Google Scholar 

  • Lindenbaum A, Westfall W (1965) Colloidal properties of plutonium in dilute aqueous solution. Int J Appl Radiat Isot 16:545–553

    Article  Google Scholar 

  • Liu YL, Yuan LY, Yuan YL et al (2012) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810

    Article  Google Scholar 

  • Liu P, Qi W, Du YF et al (2014) Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci China Chem 57:1483–1490

    Article  Google Scholar 

  • Lloyd MH, Haire RG (1973) Studies on the chemical and colloidal nature of Pu(IV) polymer. In: Congress of the IUPAC, Hamburg, p 24

    Google Scholar 

  • Lloyd MH, Haire RG (1978) The chemistry of plutonium in sol-gel processes. Radiochim Acta 25:139–148

    Article  Google Scholar 

  • Magini M, Cabrini A, Scibona G, Johansson G, Sandstrom M (1976) On the structure of highly hydrolyzed thorium salt solutions. Acta Chem Scand Ser A 30:437–447

    Article  Google Scholar 

  • Maher K, Barger JR et al (2013) Environmental speciation of actinides. Inorg Chem 52:3510–3532

    Article  Google Scholar 

  • Manfredi C, Caruso V, Vasca E, Vero S, Ventimiglia E, Palladino G, Ferri D (2006) On the hydrolysis of the tetravalent Uarnium ion U4+. J Solut Chem 35:927–937

    Article  Google Scholar 

  • Metivier H, Guillaumont R (1972) Hydrolysis of tetravalent plutonium. Radiochem Radioanal Lett 10:27–35

    Google Scholar 

  • Min X, Yang W, Hui Y et al (2017) Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO2 2+ adsorption and selective UO2 2+/Ln3+ separation. Chem Commun 53:4199–4202

    Article  Google Scholar 

  • Muller K, Brendler V, Foerstendorf H (2008) Aqueous uranium(VI) hydrolysis species characterized by attenuated total reflection Fourier-transform infrared spectroscopy. Inorg Chem 21:10127–10134

    Article  Google Scholar 

  • Murali MS, Mathur JN (2001) Use of a mixture of TRPO and TBP for the partitioning of actinides from high-level waste solutions of PUREX origin and its comparison with CMPO and other phosphorus-based extractants. Solv Extr Ion Exch 19:61–77

    Article  Google Scholar 

  • Muscatello AC, Navratil JD, Killion ME (1983) Solvent extraction of plutonium(IV) polymer by dihexyl-N, N-diethyl-carbamoylmethylphosphonate (DHDECMP). Sep Sci Technol 18:1731–1746

    Article  Google Scholar 

  • Myasoedova OB, Molochnikova GV, Tkachev NP et al (2009) Solid-phase extractants for radionuclide preconcentration and separation. New possibilities. Radiokhimiya 51:138–140

    Google Scholar 

  • Nagasaki S, Nakayama S (eds) (2015) Radioactive waste engineering and management. Springer, Tokyo

    Google Scholar 

  • Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16

    Article  Google Scholar 

  • Neck V, Kim JI, Seidel BS, Marquardt CM, Dardenne K, Jensen MP, Hauser W (2001) A spectroscopic study of the hydrolysis, colloid formation and solubility of Np(IV). Radiochim Acta 89:439–446

    Google Scholar 

  • Neck V, Muller R, Bouby M, Altmaier M, Rothe J, Denecke M, Kim JI (2002) Solubility of amorphous Th(IV) hydroxide – application of LIBD to determine the solubility product and EXAFS for aqueous speciation. Radiochim Acta 90:485–494

    Article  Google Scholar 

  • Neck V, Altmaier M, Seibert A, Yun JI, Marquardt CM, Fanghanel T (2007) Solubility and redox reactions of Pu(IV) hydrous oxide: evidence for the formation of PuO2+x(s,hyd). Radiochim Acta 95:193–207

    Article  Google Scholar 

  • Neu MP, Schulze RK, Conradson SD, Farr JD, Haire RG (1997) Polymeric Pu(IV) hydroxide: formation, prevalence and structural and physical characteristics. In: Pu futures: topical conference on plutonium and actinides. Santa Fe, p 89

    Google Scholar 

  • Newton TW, Hobart DE, Palmer PD (1985) The formation of plutonium(IV) colloid by the alpha-reduction of Pu(V) and Pu(VI) in aqueous solutions. Radiochim Acta 39:139–147

    Google Scholar 

  • Nupearachchia CN, Mahatantilab K, Vithanage M (2017) Application of graphene for decontamination of water; implications for sorptive removal. Groundwater Sustain Dev 5:206–215

    Article  Google Scholar 

  • Oak MS, Ghadse DR, Sagar VB, Bhargava VK, Patil SK (1983) Some observations on the oxidation of plutonium(IV) with hydrogen peroxide in the presence of iron. Radiochem Radioanal Lett 59:139–145

    Google Scholar 

  • Ojha S, Chappa S, Mhatre AM et al (2017) Actinides selective extractants coated magnetite nanoparticles for analytical applications. J Radioanal Nucl Chem 312:675–683

    Article  Google Scholar 

  • Okpala CC (2013) Nanocomposites: an overview. Int J Eng Res Dev 8(11):17–23

    Google Scholar 

  • Okpala CC (2014) The benefits and applications of nanocomposites. Int J Adv Eng Tech V(IV):12–18

    Google Scholar 

  • Opel K, Weiss S, Hubener S, Zanker H, Bernhard G (2007) Study of the solubility of amorphous and crystalline uranium dioxide by combined spectroscopic methods. Radiochim Acta 95:143–149

    Article  Google Scholar 

  • Palmer DA, Nguyen-Trung C (1995) Aqueous uranyl complexes. 3. Potentiometric measurements of the hydrolysis of uranyl(VI) ion at 25°C. J Solut Chem 24:1281–1291

    Article  Google Scholar 

  • Parsons-Moss T, Wang J, Jones S et al (2014) Sorption interactions of plutonium and europium with ordered mesoporous carbon. J Mater Chem A 2:11209–11221

    Article  Google Scholar 

  • Perevalov SA, Molochnikova NP (2009) Sorption of Pu in various oxidation states onto multiwalled carbon nanotubes. J Radioanal Nucl Chem 281:603–608

    Article  Google Scholar 

  • Powell BA, Dai Z, Zavarin M, Zhao P, Kersting AB (2011) Stabilization of plutonium nano colloids by epitaxial distortion on mineral surfaces. Environ Sci Technol 45:2698–2703

    Article  Google Scholar 

  • Prabhakar S, Panicker ST, Misra BM et al (1992) Studies on the reverse osmosis treatment of uranyl nitrate solution. Sep Sci Technol 27:349–359

    Article  Google Scholar 

  • Priyadarshini N, Sampath M, Kumar S, Mudali UK, Natarajan R (2014) Probing uranium(IV) hydrolyzed colloids and polymers by light scattering. J Nucl Chem 2014:1–10

    Article  Google Scholar 

  • Priyadarshini N, Sampath M, Kumar S, Mudali UK (2016) Light scattering studies on formation and determination of molecular weight of thorium(IV) aquatic colloids. J Radioanal Nucl Chem 307:25–30

    Article  Google Scholar 

  • Pyrzynska K (2010) Carbon nanostructures for separation, preconcentration and speciation of metal ions. Trends Anal Chem 29(7):718–727

    Article  Google Scholar 

  • Qiu J, Burns PC (2013) Clusters of actinides with oxide, peroxide or hydroxide bridges. Chem Rev 113:1097–1120

    Article  Google Scholar 

  • Quiles F, Burneau A (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib Spectrosc 18:61–75

    Article  Google Scholar 

  • Quiles F, Burneau A (2000) Infrared and Raman spectra of uranyl(VI) oxo-hydroxo complexes in acid aqueous solutions: a chemometric study. Vib Spectrosc 23:231–241

    Article  Google Scholar 

  • Quinn JE, Ogden MD, Soldenhoff K (2013) Solvent extraction of uranium (VI) from chloride solutions using cyphos IL-101. Solv Extr Ion Exch 31:538–549

    Article  Google Scholar 

  • Rabideau SW, Kline RJ (1960) A spectrophotometric study of the hydrolysis of plutonium(IV). J Phys Chem 64:680–682

    Article  Google Scholar 

  • Raff O, Wilken RD (1999) Removal of dissolved uranium by nanofiltration. Desalination 122:147–150

    Article  Google Scholar 

  • Rai D, Ryan JL (1982) Crystallinity and solubility of Pu(IV) oxide and hydrous oxide in aged aqueous suspensions. Radiochim Acta 30:213–216

    Article  Google Scholar 

  • Rai D, Swanson JL (1981) Properties of plutonium(IV) polymer of environment importance. Nucl Technol 54:107–111

    Article  Google Scholar 

  • Rai D, Moore DA, Oakes CS, Yui M (2000) Thermodynamic model for the solubility of thorium dioxide in the Na+-clOH- H2O system at 23°C and 90°C. Radiochim Acta 88:297–306

    Article  Google Scholar 

  • Rand MH, Fuger J, Grenthe I, Neck V, Rai D (2007) Chemical thermodynamics of thorium, vol. 11 of chemical thermodynamics. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Reed DT, Lucchini JF, Aase SB, Kropf AJ (2006) Reduction of plutonium(VI) in brine under subsurface conditions. J Radiochim Acta 94:591–597

    Google Scholar 

  • Reguillon AF, Lebuzit G, Murat D et al (2008) Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res 42:1160–1166

    Article  Google Scholar 

  • Rether A, Schuster M (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym 57:13–21

    Article  Google Scholar 

  • Romanchuk AY, Slesarev AS, Kalmykov SN et al (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15(7):2321–2327

    Article  Google Scholar 

  • Rothe J, Denecke MA, Neck V, Muller R, Kim JI (2002) XAFS investigation of the structure of aqueous Th(IV) species, colloids and solid thorium(IV) oxide/hydroxide. Inorg Chem 41:249–258

    Article  Google Scholar 

  • Rothe J, Walther C, Denecke MA, Fanghanel T (2004) XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis products. Inorg Chem 43:4708–4718

    Article  Google Scholar 

  • Rundberg RS, Mitchell AJ, Triay IR, Torstenfelt NB (1987) Size and density of a 242Pu colloid. MRS Proc 112:243

    Article  Google Scholar 

  • Runde W (2000) The chemical interactions of actinides in the environment. Los Alamos Sci 26:392–410

    Google Scholar 

  • Savage DJ, Kyffin TW (1986) Oxidative breakdown of polymeric plutonium(IV) hydroxide by cerium(IV). Polyhedron 5:743–752

    Article  Google Scholar 

  • Schuelein VL (1975) Parameters for plutonium polymer formation in nitric acid. ARH-SA-233, p 30

    Google Scholar 

  • Scierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094

    Article  Google Scholar 

  • Seaborg GT, Loveland WD (1990) The elements beyond uranium. Wiley, New York

    Google Scholar 

  • Sellers PA, Fried S, Elson RE, Zachariasen WH (1954) The preparation of some protactinium compounds and the metal. J Am Chem Soc 76:5935–5938

    Article  Google Scholar 

  • Sengupta A, Deb AKS, Dasgupta K et al (2017a) Diglycolamic acid-functionalized multiwalled carbon nanotubes as a highly efficient sorbent for f-block elements: experimental and theoretical investigations. New J Chem 41:4531–4545

    Article  Google Scholar 

  • Sengupta A, Deb AKS, Kumar P et al (2017b) Amidoamine functionalized task specific carbon nanotube for efficient sorption of penta and hexavalent neptunium: experimental and theoretical investigations. J Environ Chem Eng 5(3):3058–3064

    Article  Google Scholar 

  • Serrano-Purroy D, Baron P, Christiansen B et al (2005) Recovery of minor actinides from HLLW using the DIAMEX process. Radiochim Acta 93:351–355

    Google Scholar 

  • Shao D, Hu J, Wang X (2010) Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO2 2+, Cu2+, and Pb2+ from aqueous solutions. Plasma Process Polym 7:977–985

    Article  Google Scholar 

  • Shi WQ, Yuan LY, Li ZJ et al (2012) Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochim Acta 100:727–736

    Article  Google Scholar 

  • Silver GL (1983) Free energy of plutonium polymer formation. J Less Common Met 91:317–320

    Article  Google Scholar 

  • Singh S, Barick KC, Bahadur D (2013) Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater Nanotechonol 3(20):1–19

    Google Scholar 

  • Singhal RK, Karpe R, Muthe KP et al (2009) Plutonium-239+240 selectivity for pseudo-colloids of iron in subsurface aquatic environment having elevated level of dissolved organic carbon. J Radioanal Nucl Chem 280:141–148

    Article  Google Scholar 

  • Soderholm L, Almond PM, Skanthakumar S, Wilson RE, Burns PC (2008) The structure of the plutonium oxide nanocluster [Pu38O56Cl54(H2O)8]14−. Angew Chem 120:304–308

    Article  Google Scholar 

  • Song WC, Shao DD, Lu SS et al (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57:1291–1299

    Article  Google Scholar 

  • Starvin AM, Rao TP (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63:225–232

    Article  Google Scholar 

  • Steppert M, Walther C, Fuss M, Buchner S (2012) On the polymerization of hexavalent uranium. An electrospray mass spectrometry study. Rapid Commun Mass Spectrom 26:583–591

    Article  Google Scholar 

  • Strickert RG, Rai D, Fulton RW (1984) Effect of ageing on the solubility and crystallinity of Np(IV) hydrous oxide. ACS Symp Ser 246:135–145

    Article  Google Scholar 

  • Sun Y, Shao D, Chen C et al (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47(17):9904–9910

    Article  Google Scholar 

  • Sun Y, Ding C, Cheng W et al (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408

    Article  Google Scholar 

  • Sureshkumar MK, Das D, Mallia MB et al (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  Google Scholar 

  • Takao S, Takao K, Kraus W, Emmerling F, Scheinost AC, Bernhard G, Hennig C (2009) First hexanuclear U(IV) and Th(IV) formate complexes – structure and stability range in solution. Eur J Inorg Chem 2009:4771–4775

    Article  Google Scholar 

  • Tallent OK, Mailen JC, Bell JT, Arwood PC (1982) Method of removing Pu(IV) polymer from nuclear fuel reclaiming liquid. US 4316776 A

    Google Scholar 

  • Tan XL, Xu D, Chen CL (2008) Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96:23–29

    Google Scholar 

  • Tan L, Liu Q, Jing X et al (2015a) Removal of uranium (VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem Eng J 273:307–315

    Article  Google Scholar 

  • Tan L, Liu Q, Song D et al (2015b) Uranium extraction using a magnetic CoFe2O4-graphene nanocomposite: kinetics and thermodynamics studies. New J Chem 39:2832–2838

    Article  Google Scholar 

  • Tan L, Wang YL, Liu Q et al (2015c) Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem Eng J 259:752–760

    Article  Google Scholar 

  • Tan LC, Wang J, Liu Q et al (2015d) The synthesis of a manganese dioxide–iron oxide–graphene magnetic nanocomposite for enhanced uranium(VI) removal. New J Chem 39:868–876

    Article  Google Scholar 

  • Tananaev IG, Nikonov MV, Myasoedov BF et al (2007) Plutonium in higher oxidation states in alkaline media. J Alloys Compd 444–445:668–672

    Article  Google Scholar 

  • Teja AS, Koh P (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45

    Article  Google Scholar 

  • Thiyagarajan P, Diamond H, Soderholm L, Horwitz EP, Toth LM, Felker LK (1990) Plutonium(IV) polymers in aqueous and organic media. Inorg Chem 29:1903–1907

    Article  Google Scholar 

  • Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymer: Starburst dendritic macromolecules. Polym J 17:117–132

    Article  Google Scholar 

  • Torapava N, Persson I et al (2009) Hydration and hydrolysis of thorium(IV) in aqueous solution and the structures of two crystalline thorium(IV) species. Inorg Chem 48:11712–11723

    Article  Google Scholar 

  • Toth LM, Friedman HA (1978) The IR spectrum of Pu(IV) polymer. J Inorg Nucl Chem 40:807–810

    Article  Google Scholar 

  • Toth LM, Friedman HA, Osborne MM (1981) Polymerization of Pu(IV) in aqueous nitric acid solutions. J Inorg Nucl Chem 43:2929–2934

    Article  Google Scholar 

  • Toth LM, Friedman HA, Begun GM, Dorris SE (1984) Raman study of uranyl ion attachment to Th(IV) hydrous polymer. J Phys Chem 88:5574–5577

    Article  Google Scholar 

  • Triay IR, Hobart DE, Mitchell AJ, Newton TW, Ott MA, Palmer PD, Rundberg RS, Thompson JL (1991) Size determinations of plutonium colloids using autocorrelation photon spectroscopy. Radiochim Acta 52:127–131

    Google Scholar 

  • Vidya K, Dapurkar SE, Selvam P et al (2001) The entrapment of UO2 2+ in mesoporous MCM-41 and MCM-48 molecular sieves. Micropor Mesopor Mater 50:173–179

    Article  Google Scholar 

  • Vidya K, Gupta NM, Selvam P (2004) Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Mater Res Bull 39:2035–2048

    Article  Google Scholar 

  • Vivero-Escoto JL, Carboni M, Abney CW et al (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Micropor Mesopor Mater 180:22–31

    Article  Google Scholar 

  • Walther C (2008) From hydrolysis to the formation of colloids-polymerization of tetravalent actinide ions. PhD thesis, Universitat Mainz

    Google Scholar 

  • Walther C, Denecke MA (2013) Actinide colloids and particles of environmental concern. Chem Rev 113:995–1015

    Article  Google Scholar 

  • Walther C, Cho HR, Marquardt CM, Neck V, Seibert A, Yun JI, Fanghanel T (2007) Hydrolysis of plutonium(IV) in acidic solutions: no effect of hydrolysis on absorption-spectra of mononuclear hydroxide complexes. Radiochim Acta 95:7–16

    Article  Google Scholar 

  • Walther C, Fuss M, Buchner S (2008) Formation and hydrolysis of polynuclear Th(IV) complexes – a nano-electrospray mass-spectrometry study. Radiochim Acta 96:411–425

    Article  Google Scholar 

  • Walther C, Rothe J, Brendebach B, Fuss M, Altmaier M, Marquardt CM, Buchner S, Cho HR, Yun JI, Seibert A (2009) New insights in the formation processes of Pu(IV) colloids. Radiochim Acta 97:199–207

    Article  Google Scholar 

  • Walther C, Rothe J, Schimmelpfennig B, Fuss M (2012) Thorium nanochemistry: the solution structure of the Th(IV)-hydroxo pentamer. Dalton Trans 41:10941–10947

    Article  Google Scholar 

  • Wang R, Carducci MD, Zheng Z (2000) Direct hydrolytic route to molecular oxo-hydroxo lanthanide clusters. Inorg Chem 39:1836–1837

    Article  Google Scholar 

  • Wang XK, Chen CL, Hu WP et al (2005) Sorption of 243Am(III) to multiwall carbon nanotubes. Environ Sci Technol 39(8):2856–2860

    Article  Google Scholar 

  • Wang L, Yang Z, Gao J et al (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128(41):13358–13359

    Article  Google Scholar 

  • Wang XK, Shao DD, Jiang ZQ et al (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864

    Article  Google Scholar 

  • Wang J, Liu P, Li Z et al (2013) Th(IV) adsorption onto oxidized multiwalled carbon nanotubes in the presence of hydroxylated fullerene and carboxylated fullerene. Materials 6:4168–4185

    Article  Google Scholar 

  • Wang X, Yu S, Jin J et al (2016) Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci Bull 61(20):1583–1593

    Article  Google Scholar 

  • Weigel F, Katz J, Seaborg GT (1997) The chemistry of the actinide elements. Chapman and Hall, London

    Google Scholar 

  • Wester DW (1982) Synthesis and characterization of bis(μ-hydroxo)tetraaquadiplutonium(IV) sulfate, Pu2(OH)2(SO4)3.4H2O, a novel compound containing hydrolyzed plutonium(IV). Inorg Chem 21:3382–3385

    Article  Google Scholar 

  • Wilson RE, Skanthakumar S, Soderholm L (2011) Separation of plutonium oxide nanoparticles and colloids. Angew Chem Int Ed 50:11234–11237

    Article  Google Scholar 

  • Yaftian MR, Hassanzadeh L, Eshraghi ME et al (2003) Solvent extraction of thorium (IV) and europium (III) ions by diphenyl-N,N-dimethylcarbamoylmethylphosphine oxide from aqueous nitrate media. Sep Purif Technol 31:261–268

    Article  Google Scholar 

  • Yang D, Song S, Zou Y et al (2017a) Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chem Eng J 323:143–152

    Article  Google Scholar 

  • Yang S, Qian J, Kuang L et al (2017b) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Interfaces 9:29337–29344

    Article  Google Scholar 

  • Yao W, Wang X, Liang Y et al (2018) Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chem Eng J 332:775–786

    Article  Google Scholar 

  • Yousefi SR, Ahmadi SJ, Shemirani F et al (2009) Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta 80:212–217

    Article  Google Scholar 

  • Yuan LY, Liu YL, Shi WQ et al (2011) High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans 40:7446–7453

    Article  Google Scholar 

  • Zakharchenko A, Malikov DA, Myasoedova GV et al (2012) Solid-phase extractants based on taunit carbon nanotubes for actinide and REE preconcentration from nitric acid solutions. Radiokhimiya 54:148–151

    Google Scholar 

  • Zanker H, Ulrich K-U, Opel K, Brendler V (2007) The role of colloids in uranium transport: a comparison of nuclear waste repositories and abandoned uranium mines. In: IMWA symposium: water in mining environments, Cagliari

    Google Scholar 

  • Zhao P, Steward SA (1997) Literature review of intrinsic actinide colloids related to spent fuel waste package release rates. UCRL-ID-126039

    Google Scholar 

  • Zhao GX, Wen T, Yang X et al (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188

    Article  Google Scholar 

  • Zhao YG, Li JX, Zhang SW et al (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxidecomposites. RSC Adv 3:18952–18959

    Article  Google Scholar 

  • Zong PF, Wang SF, Zhao YL et al (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Priyadarshini, N., Rakesh, K.B., Ilaiyaraja, P. (2018). Actinide Speciation in Environment and Their Separation Using Functionalized Nanomaterials and Nanocomposites. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics