Skip to main content
  • 3175 Accesses

Abstract

The first step toward designing a new gas turbine is to generate its thermodynamic cycle diagram. This diagram provides the essential information about the connection between the turbine inlet temperature TIT, the compressor pressure ratio \( \pi_{c} \) and the gas turbine thermal efficiency \( \eta_{th} \). Starting with a simple GT-cycles, in the following sections methods are introduced to determine the GT-efficiency and its improvement by changing the gas turbine configurations and cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Schobeiri, M.T., 2005, “Turbomachinery Flow Physics and Dynamic Performance,” First Edition, Springer-Verlag, New York, Berlin, Heidelberg.

    Google Scholar 

  • 2. Schobeiri, M.T., 2012, “Turbomachinery Flow Physics and Dynamic Performance,” Second and Enhanced Edition, 725 pages with 433 Figures, Springer-Verlag, New York, Berlin, Heidelberg, ISBN 978-3-642-24675-3, Library of Congress 2012935425.

    Google Scholar 

  • 3. Schobeiri, M.T., 2015, “UHEGT, the Ultra-High Efficiency Gas Turbine Engine with Stator Internal Combustion, Patent Protection No. 62/046,542.

    Google Scholar 

  • 4. Schobeiri, Meinhard T., Ghoreyshi Seyed M., UHEGT, the Ultra-high Efficiency Gas Turbine Engine with Stator Internal Combustion ASME Transactions Journal of Eng. Gas Turbines Power. 2015; 138(2):021506-021506-14. GTP-15-1351, doi:10.1115/1.4031273.

  • 5. Schobeiri, M.T., 1982, “Dynamisches Verhalten der Luftspeichergasturbine Huntorf bei einem Lastabwurf mit Schnellabschaltung,” Brown Boveri, Technical Report, TA-58.

    Google Scholar 

  • 6. Schobeiri, M. T.and Haselbacher, H., 1985, “Transient Analysis of GAS Turbine Power Plant, Using the Huntorf Compressed Air Storage Plant as an Example,” ASME Paper No. 85-GT-197.

    Google Scholar 

  • 7. Schobeiri, T., 1986, “A General Computational Method for Simulation and Prediction of Transient Behavior of Gas Turbines,” ASME Paper No. 86-GT-180.1982, ".

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinhard T. Schobeiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schobeiri, M.T. (2018). Gas Turbine Thermodynamic Process. In: Gas Turbine Design, Components and System Design Integration. Springer, Cham. https://doi.org/10.1007/978-3-319-58378-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58378-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58376-1

  • Online ISBN: 978-3-319-58378-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics