Skip to main content

A Blockchain-Based Storage System for Data Analytics in the Internet of Things

  • Chapter
  • First Online:
New Advances in the Internet of Things

Part of the book series: Studies in Computational Intelligence ((SCI,volume 715))

Abstract

Without a central authority, blockchains can easily enable the management of transactions. Smart contracts stored on blockchains are self-executing contractual states that are not controlled by anybody, so they can be trusted. In addition, due to increasing improvements in processor and memory technology, IoT (Internet of Things) devices have more powerful processing power and greater memory space, which allow them to execute user-defined programs, e.g., smart contracts. Shifting part of applications’ tasks to IoT devices reduces the transferred data amount over the IoT network. The parallelism of large-scale storage systems is employed to decrease many basic data analytics tasks’ execution time. Blockchain can be used as smart contracts that facilitate and enforce the negotiation of a contract in the IoT. This chapter proposes a blockchain-based storage system, named Sapphire, for data analytics applications in the Internet of Things. All the IoT data from the devices forms objects with IDs, attributes, policies, and methods. We present an OSD-based smart contract (OSC) approach employed in Sapphire as a transaction protocol, where IoT devices interact with such blockchains. For data analytics applications, the IoT device processors execute application-specific operations. By doing so, only the results are returned to clients instead of data files read by them. Therefore, the Sapphire system can greatly decrease the overhead of data analytics in the Internet of Things.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Evans, The internet of things how the next evolution of the internet is changing everything (2011), http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

  2. K. Rose, S. Eldridge, L. Chapin, The internet of things: an overview understanding the issues and challenges of a more connected world (2015), http://www.internetsociety.org/sites/default/files/ISOC-IoT-Overview-20151022.pdf

  3. L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Google Scholar 

  4. C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B.L.S. Saroiu, P. Bahl, An operating system for the home, in NSDI. USENIX (2012)

    Google Scholar 

  5. J. Vanus, M. Smolon, R. Martinek, J. Koziorek, J. Zidek, P. Bilik, Testing of the voice communication in smart home care. Hum. Centric Comput. Inf. Sci. 5(15), 1–22 (2015)

    Google Scholar 

  6. Z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou, G. Kalogridis, M. Sooriyabandara, Z. Zhu, S. Lambotharan, W.H. Chin, Smart grid communications: overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutor. 15(1), 21–38 (2013)

    Google Scholar 

  7. F. Zafari, I. Papapanagiotou, K. Christidis, Micro-location for internet of things equipped smart buildings. IEEE Internet Things J. 3(1), 96–112 (2016)

    Article  Google Scholar 

  8. T. Hardjono, N. Smith, Cloud-based commissioning of constrained devices using permissioned blockchains, in Proceedings of the International Workshop on IoT Privacy, Trust, and Security (2016), pp. 29–36

    Google Scholar 

  9. K. Christidis, M. Devetsiokiotis, Blockchains and smart contracts for the internet of things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  10. R. Pass, L. Seeman, A. Shelat, Analysis of the blockchain protocol in asynchronous networks. IACR ePrint (2016)

    Google Scholar 

  11. G. Wood, Ethereum: a secure decentralized transaction ledger, http://gavwood.com/paper.pdf

  12. M. Mesnier, G.R. Ganger, E. Riedel, Object-based storage. IEEE Commun. Mag. 41(8), 84–90 (2003)

    Article  Google Scholar 

  13. Q. Xu, K.M.M. Aung, Y. Zhu, K.L. Yong, A large-scale object-based active storage platform for data analytics in the internet of things, in The 9th International Conference on Multimedia and Ubiquitous Engineering (MUE) (2015), pp. 405–413

    Google Scholar 

  14. Q. Xu, K.M.M. Aung, Y. Zhu et al., Building a large-scale object-based active storage platform for data analytics in the internet of things. J. Supercomput. 72, 2796–2814 (2016)

    Google Scholar 

  15. G.A. Gibson, R.V. Meter, Network attached storage architecture. Commun. ACM 43(11), 37–45 (2000)

    Article  Google Scholar 

  16. N. Szabo, Formalizing and securing relationships on public networks. First Monday 2(9) (1997)

    Google Scholar 

  17. L. Luu, D.H. Chu, H. Olickel, P. Saxena, A. Hobor, Making smart contracts smarter, in ACM CCS (2016)

    Google Scholar 

  18. J. Wang, P. Shang, J. Yin, Draw: a new data-grouping-aware data placement scheme for data intensive applications with interest locality, in Cloud Computing for Data-Intensive Applications (Springer, 2014), pp. 149–174

    Google Scholar 

  19. E. Riedel, G.A. Gibson, C. Faloutsos, Active storage for large-scale data mining and multimedia, in VLDB (1998), pp. 62–73

    Google Scholar 

  20. A. Acharya, M. Uysal, J.H. Saltz, Active disks: programming model, algorithms and evaluation, in ASPLOS (1998), pp. 81–91

    Google Scholar 

  21. K. Keeton, D.A. Patterson, J.M. Hellerstein, A case for intelligent disks (idisks). SIGMOD Rec. 27(3), 42–52 (1998)

    Article  Google Scholar 

  22. L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G.R. Ganger, E. Riedel, A. Ailamaki, Diamond: a storage architecture for early discard in interactive search, in FAST (2004), pp. 73–86

    Google Scholar 

  23. S.W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz, P. Kumar, W.K. Liao, A. Choudhary, Enabling active storage on parallel I/O software stacks, in MSST (2010), pp. 1–12

    Google Scholar 

  24. Q. Xu, H.T. Shen, Z. Chen, B. Cui, X. Zhou, Y. Dai, Hybrid retrieval mechanisms in vehicle-based P2P networks, in Proceedings of the International Conference on Computational Science (ICCS’09). Lecture Notes in Computer Science, vol. 5544 (Springer, Berlin, 2009), pp. 303–314

    Google Scholar 

  25. K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file system, in MSST (2010), pp. 1–10

    Google Scholar 

  26. Q. Xu, Y. Dai, B. Cui, A HIT-based semantic search approach in unstructured P2P systems. Acta Sci. Nat. Univ. Pekin. 46(1), 17–29 (2010)

    Google Scholar 

  27. Y. Li, W. Dai, Z. Ming, M. Qiu, Privacy protection for preventing data over-collection in smart city. IEEE Trans. Comput. 65(5), 1339–1350 (2016)

    Google Scholar 

  28. N. Boumkheld, M. Ghogho, M.E. Koutbi, Energy consumption scheduling in a smart grid including renewable energy. J. Inf. Proces. Syst. 11(1), 116–124 (2015)

    Google Scholar 

  29. I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup service for internet applications, in SIGCOMM (2001), pp. 149–160

    Google Scholar 

  30. Q. Xu, H.T. Shen, Z. Chen, B. Cui, X. Zhou, Y. Dai, Hybrid information retrieval policies based on cooperative cache in mobile P2P networks. Front. Comput. Sci. China 3(3), 381–395 (2009)

    Article  Google Scholar 

  31. Q. Xu, R.V. Arumugam, K.L. Yong, S. Mahadevan, Efficient and scalable metadata management in EB-scale file systems. IEEE Trans. Parallel Distrib. Syst. 25(11), 2840–2850 (2014)

    Article  Google Scholar 

  32. C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Q. Xu, R.V. Arumugam, K.L. Yong, S. Mahadevan, DROP: facilitating distributed metadata management in EB-scale storage systems, in MSST (2013), pp. 1–10

    Google Scholar 

  34. A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: the blockchain model of cryptography and privacy-preserving smart contracts, in IEEE Symposium on Security and Privacy (S&P) (2016), pp. 839–858

    Google Scholar 

  35. Q. Xu, W. Xi, K.L. Yong, C. Jin, Concurrent regeneration code with local reconstruction in distributed storage systems, in The 9th International Conference on Multimedia and Ubiquitous Engineering (MUE) (2015), pp. 415–422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanqing Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, Q., Aung, K.M.M., Zhu, Y., Yong, K.L. (2018). A Blockchain-Based Storage System for Data Analytics in the Internet of Things. In: Yager, R., Pascual Espada, J. (eds) New Advances in the Internet of Things. Studies in Computational Intelligence, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-319-58190-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58190-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58189-7

  • Online ISBN: 978-3-319-58190-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics