Skip to main content

Chile2015: Induced Magnetic Fields on the Z Component by Tsunami Wave Propagation

  • Chapter
  • First Online:
The Chile-2015 (Illapel) Earthquake and Tsunami

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 918 Accesses

Abstract

This study reports the magnetic disturbances due to the Chilean tsunami (2015). Using 10 ground-based magnetometer observatories spread in the Pacific Ocean, covering approximately 150º epicentral distance, for a time duration of 24 h from the tsunami initiation, tsunamigenic disturbances in the Z-component of the geomagnetic field are investigated. The methodologies namely, the discrete wavelet transform (DWT), the newly developed approach called effectiveness wavelet coefficient (EWC), and intrinsic mode functions (IMF) decomposition are implemented to detect these tsunamigenic disturbances. The analysis reveals the presence of an increase of EWC amplitude due to tsunamigenic magnetic disturbances nearly around the tsunami arrival time at each observatory. The IMF decomposition analysis using 10–40 min levels of decomposition shows the amplified magnetic disturbances around the time of the increase in EWC amplitude. In most of the observatories, the time of the amplified EWC is consistent with the approximate time of the tsunami arrival, while in the other observatories, the IMF decomposition provides better consistency. The results suggest that the methodologies implemented in the present work can be effectively used to characterize the tsunamigenic contributions in the geomagnetic field, since the tsunami wavefront propagates towards the Pacific Ocean covers the time duration as long as 24 h from the tsunami initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bryant, E., Tsunami: The underrated hazard, (Cambridge University Press, 2001).

    Google Scholar 

  • Chatlani, N., and Soraghan, J. J. (2008), Adaptive Empirical Mode Decomposition for Signal Enhancement with Application to Speech, Systems, Signals and Image Processing, 2008, IWSSIP 2008, 15th International Conference on. IEEE.

    Google Scholar 

  • Constantin, A., and Henry, D., Solitons and Tsunamis, (Z. Naturforsch, 2009).

    Google Scholar 

  • Daubechies, I. (1990), The wavelet transform, time-frequency localization and signal analysis, IEEE T. Inform. Theory 36 (5), 961–1005.

    Google Scholar 

  • Fruhauff, D., Glassmeiera, K. H., Lockwoodb, M., and Heynera, D. (2015), Extracting planetary waves from geomagnetic time series using Empirical Mode Decomposition, J. Atmos. Sol.-Terr. Phy. 129, 6–12.

    Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Philos. Tr. R. Soc. S-A 454 (1971), 903–995.

    Google Scholar 

  • Huang, N. E., and Shen, S. S., Hilbert-Huang transform and its applications, (World Scientific, 2005).

    Google Scholar 

  • Huene, R., Bourgois, J., Miller, J., and Pautot, G. (1989),Utadaetal:2011 A large tsunamogenic landslide and debris flow along the Peru Trench, J. Geophys. Res.: Sol. Ea. 94 (B2), 1703–1714.

    Google Scholar 

  • Jackson, L. P., and Mound, J. E. (2010), Geomagnetic variation on decadal time scales: What can we learn from Empirical Mode Decomposition?, Geophys. Res. Lett. 37, 4307.

    Google Scholar 

  • Jones, T., Middelmann, M., and Corby, N., Natural hazard risk in Perth, (Western AustraliaCities Project Perth Report, 2005).

    Google Scholar 

  • Kherani, E. A., Lognonné , P., Hébert, H., RollanD, L., AstafyevA, E., Occhipinti, G., Coïsson, P., Walwer, D., and DE Paula, E. R. (2012), Modelling of the total electronic content and magnetic field anomalies generated by the 2011 Tohoku-Oki tsunami and associated acoustic-gravity waves, Geophys. J. Int. 191 (3), 1049–1066.

    Google Scholar 

  • Kherani, E. A., Rolland, L., Lognonné, P., Sladen, A., Klausner, V., and de Paula, E. R. (2016), Traveling ionosphere disturbances propagating ahead of the Tohoku-Oki tsunami: a case study, Geophys. J. Int. 204 (2), 1148–1158.

    Google Scholar 

  • Klausner, V., Papa, A. R. R., Domingues, M. O., Mendes, O., and Frick, P. (2013), Characteristics of solar diurnal variations: A case study based on records from the ground magnetic station at Vassouras, Brazil, J. Atmos. Sol.-Terr. Phy. 92, 124–136.

    Google Scholar 

  • Klausner, V., Mendes, O., Domingues, M. O., Papa, A. R. R., Tyler, R. H., Frick, P., and Kherani, E. A. (2014a), Advantage of wavelet technique to highlight the observed geomagnetic perturbations linked to the Chilean tsunami (2010), J. Geophys. Res.: Space 119 (4), 3077–3093.

    Google Scholar 

  • Klausner, V., Ojeda González, A., Domingues, M. O., Mendes, O., and Papa, A. R. R. (2014b), Study of local regularities in solar wind data and ground magnetograms, J. Atmos. Sol.-Terr. Phy. 112 (0), 10–19.

    Google Scholar 

  • Klausner, V., Domingues, M. O., Mendes, O., Mendes da Costa, A., Papa, A. R. R., and Ojeda González, A. (2016a), Latitudinal and longitudinal behavior of the geomagnetic field during a disturbed period: A case study using wavelet techniques, Adv. Sp. Res., in Press, doi:10.1016/j.asr.2016.01.018.

  • Klausner, V., Kherani, E. A., and Muella, M. T.A. H. (2016b), Near- and far-field tsunamigenic effects on the Z component of the geomagnetic field during the Japanese event, 2011, J. Geophys. Res.: Space, in Press, doi:10.1002/2015JA022173.

  • Mallat, S. (1989), Multiresolution approximations and wavelets orthonormal bases, T. Am. math. Soc. 315 (1), 69–87.

    Google Scholar 

  • Manoj, C., Maus, S., and Chulliat, A. (2011) Observation of Magnetic Fields Generated by Tsunamis, EOS, T. Am. Geophys. Un. 92 (2), 13–14.

    Google Scholar 

  • Occhipinti, G., lognonné, P., Kherani, E. A., and Hébert, H. (2006), 3D Waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett. 33, L20104.

    Google Scholar 

  • Occhipinti, G., Kherani, E. A., and Lognonné, P. (2008), Geomagnetic dependence of ionospheric disturbances induced by tsunamigenic internal gravity waves, Geophys. J. Int. 173 (3), 753–765.

    Google Scholar 

  • Occhipinti, G., Coisson, P., Makela, J. J., Allgeyer, S., Kherani, E. A., Hébert, H., and Lognonné, P. (2011), Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere, Earth Planets Space 63 (7), 847–851.

    Google Scholar 

  • Rolland, L., Occhipinti, G., Lognonné, P., and Loevenbruck, A. (2010), Ionospheric gravity waves detected offshore Hawaii after tsunamis, Geophys. Res. Lett. 37 (17), L17101.

    Google Scholar 

  • Saito, T. (2013), Dynamic tsunami generation due to sea-bottom deformation: Analytical representation based on linear potential theory, Earth Planets Space 65 (12), 1411–1423.

    Google Scholar 

  • Sugioka, H., Hamano, Y., Baba, K., Kasaya, T., TadA, N., and Suetsugu, D. (2014), Tsunami: Ocean dynamo generator, Science Rep. 4, 3596.

    Google Scholar 

  • SynolakiS, C., Liu, P., Philip, H. A., Carrier, G., and Yeh, H. (1997), Tsunamigenic sea-floor deformations, Science 278 (5338), 598.

    Google Scholar 

  • Tyler, R. H. (2005), A simple formula for estimating the magnetic fields generated by tsunami flow, Geophys. Res. Lett. 32, L09608.

    Google Scholar 

  • Utada, H., Shimizu, H., Ogawa, T., Maeda, T., Furumura, T., Yamamoto, T., Yamazaki, N., Yoshitake, Y., and Nagamachi, S. (2011), Geomagnetic field changes in response to the 2011 off the Pacific Coast of Tohoku Earthquake and Tsunami, Earth Planet. Sc. Lett. 311 (1–2), 11–27.

    Google Scholar 

Download references

Acknowledgments

V. Klausner wishes to thank CAPES for the financial support of her Postdoctoral research within the Programa Nacional de Po´s-Doutorado (PNPD – CAPES). T. Almeida wishes to thank CNPq/PIBIC under Grant No. 800038/2014-2 and 138978/2015-8 for Scientific Initiation fellowship. F. C. de Meneses acknowledges the support given by CNPq under the grant number 312704/2015-1. M. Muella would like to thank the support from CNPq under Grant No. 304674/2014-1. The authors would like to thank the National Oceanic and Atmospheric Administration (NOAA), and the International Real-time Magnetic Observatory Network (INTERMAGNET) for the dataset used in this work. The NOAA tsunami-travel time map was generated by MOST (Method of Splitting Tsunami) model and distributed by NOAA Center for Tsunami Research (http://nctr.pmel.noaa.gov/model.html). The INTERMAGNET data were downloaded from INTERMAGNET website (http://www.intermagnet.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Klausner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Klausner, V., Almeida, T., De Meneses, F.C., Kherani, E.A., Pillat, V.G., Muella, M.T.A.H. (2017). Chile2015: Induced Magnetic Fields on the Z Component by Tsunami Wave Propagation. In: Braitenberg, C., Rabinovich, A. (eds) The Chile-2015 (Illapel) Earthquake and Tsunami. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-57822-4_14

Download citation

Publish with us

Policies and ethics