Skip to main content

Neurobehavioral Rehabilitation of Visual Deficits in Older Patients

  • Chapter
  • First Online:
  • 2306 Accesses

Part of the book series: Practical Issues in Geriatrics ((PIG))

Abstract

The efficiency of interconnections among sensory neurons is reduced in the aged brain as a result of metabolic decline and subregulation of neural communication. Nevertheless, both behavioral and neuroimaging studies show that this cortical plasticity with negative consequences can be reversed through neurobehavioral restorative training. This results in improved normal and deficient visual processing in aging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blokland A (1995) Acetylcholine: a neurotransmitter for learning and memory? Brain Res Rev 21(3):285–300

    Article  CAS  PubMed  Google Scholar 

  2. Roberts MJ, Zinke W, Guo K, Robertson R, McDonald JS, Thiele A (2005) Acetylcholine dynamically controls spatial integration in marmoset primary visual cortex. J Neurophysiol 93(4):2062–2072

    Article  CAS  PubMed  Google Scholar 

  3. Loerch PM, Lu T, Dakin KA, Vann JM, Isaacs A, Geula C, Wang J, Pan Y, Gabuzda DH, Li C, Prolla TA (2008) Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 3(10):e3329

    Article  PubMed  PubMed Central  Google Scholar 

  4. Betts LR, Taylor CP, Sekuler AB, Bennett PJ (2005) Aging reduces center-surround antagonism in visual motion processing. Neuron 45(3):361–366

    Article  CAS  PubMed  Google Scholar 

  5. Casco C, Guzzon D, Moise M, Vecchies A, Testa T, Pavan A (2014) Specificity and generalization of perceptual learning in low myopia. Restor Neurol Neurosci 32(5):639–653

    PubMed  Google Scholar 

  6. Casco C, Robol V, Barollo M, Cansino S (2011) Effects of aging on visual contour integration and segmentation. Invest Ophthalmol Vis Sci 52(7):3955–3961

    Article  PubMed  Google Scholar 

  7. Casco C, DiStefani E, Pinello L, Sato G, Battaglini L (2015) Hyper-vision of mirror symmetry in patients with macular degeneration reflects parafoveal cortical reorganization. Restor Neurol Neurosci 34(1):67–77

    Google Scholar 

  8. Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300(5620):812–815

    Article  CAS  PubMed  Google Scholar 

  9. Peters MA, Thompson B, Merabet LB, Wu AD, Shams L (2013) Anodal tDCS to V1 blocks visual perceptual learning consolidation. Neuropsychologia 51(7):1234–1239

    Article  PubMed  Google Scholar 

  10. Li SC, Lindenberger U, Sikström S (2001) Aging cognition: from neuromodulation to representation. Trends Cogn Sci 5(11):479–486

    Google Scholar 

  11. Chang LH, Yotsumoto Y, Salat DH, Andersen GJ, Watanabe T, Sasaki Y (2015) Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning. Neurobiol Aging 36(1):315–322

    Article  PubMed  Google Scholar 

  12. Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7(1):30–40

    Article  CAS  PubMed  Google Scholar 

  13. Bavelier D et al (2010) Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci 30(45):14964–14971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahncke HW, Bronstone A, Merzenich MM (2006) Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res 157:81–109

    Article  PubMed  Google Scholar 

  15. Van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1(3):191–198

    Article  PubMed  Google Scholar 

  16. DeLoss DJ, Watanabe T, Andersen GJ (2015) Improving vision among older adults behavioral training to improve sight. Psychol Sci 26(4):456–466

    Article  PubMed  PubMed Central  Google Scholar 

  17. DeLoss DJ, Watanabe T, Andersen GJ (2014) Optimization of perceptual learning: effects of task difficulty and external noise in older adults. Vision Res 99:37–45

    Article  PubMed  Google Scholar 

  18. Bower JD, Andersen GJ (2012) Aging, perceptual learning, and changes in efficiency of motion processing. Vision Res 61:144–156

    Article  PubMed  Google Scholar 

  19. Berry AS, Zanto TP, Clapp WC, Hardy JL, Delahunt PB, Mahncke HW, Gazzaley A (2010) The influence of perceptual training on working memory in older adults. PLoS One 5(7):e11537

    Article  PubMed  PubMed Central  Google Scholar 

  20. Richards E, Bennett PJ, Sekuler AB (2006) Age related differences in learning with the useful field of view. Vision research 46(25):4217–4231

    Google Scholar 

  21. Furmanski CS, Schluppeck D, Engel SA (2004) Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol 14(7):573–578

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz S, Maquet P, Frith C (2002) Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci 99(26):17137–17142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walker MP, Stickgold R, Jolesz FA, Yoo SS (2005) The functional anatomy of sleep-dependent visual skill learning. Cereb Cortex 15(11):1666–1675

    Article  PubMed  Google Scholar 

  24. Yotsumoto Y, Watanabe T, Sasaki Y (2008) Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 57(6):827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piëch V, Li W, Reeke GN, Gilbert CD (2013) Network model of top-down influences on local gain and contextual interactions in visual cortex. Proc Natl Acad Sci 110(43):E4108–E4117

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yotsumoto Y, Chang LH, Ni R, Pierce R, Andersen GJ, Watanabe T, Sasaki Y (2014) White matter in the older brain is more plastic than in the younger brain. Nat Commun 5

    Google Scholar 

  27. Polat U, Schor C, Tong JL, Zomet A, Lev M, Yehezkel O, Sterkin A, Levi DM (2012) Training the brain to overcome the effect of aging on the human eye. Sci Rep 2

    Google Scholar 

  28. Sabel BA, Fedorov AB, Naue N, Borrmann A, Herrmann C, Gall C (2011) Non-invasive alternating current stimulation improves vision in optic neuropathy. Restor Neurol Neurosci 29(6):493–505

    PubMed  Google Scholar 

  29. Gall C, Sgorzaly S, Schmidt S, Brandt S, Fedorov A, Sabel BA (2011) Noninvasive transorbital alternating current stimulation improves subjective visual functioning and vision-related quality of life in optic neuropathy. Brain Stimul 4(4):175–188

    Article  PubMed  Google Scholar 

  30. Yu D, Cheung SH, Legge GE, Chung ST (2010) Reading speed in the peripheral visual field of older adults: does it benefit from perceptual learning? Vision Res 50(9):860–869

    Article  PubMed  PubMed Central  Google Scholar 

  31. Astle AT, Blighe AJ, Webb BS, McGraw PV (2015) The effect of normal aging and age-related macular degeneration on perceptual learning. J Vis 15(10):16–16

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chung ST (2011) Improving reading speed for people with central vision loss through perceptual learning. Invest Ophthalmol Vis Sci 52(2):1164–1170

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tarita-Nistor L, Lam D, Brent MH, Steinbach MJ, González EG (2013) Courier: a better font for reading with age-related macular degeneration. Can J Ophthalmol 48(1):56–62

    Article  PubMed  Google Scholar 

  34. Maniglia M, Pavan A, Sato G, Contemori G, Montemurro S, Battaglini L, Casco C (2016) Perceptual learning leads to long lasting visual improvement in patients with central vision loss. Restorative Neurology and Neuroscience 34(5):697–720

    Google Scholar 

  35. Rosengarth K, Keck I, Brandl-Rühle S, Frolo J, Hufendiek K, Greenlee MW, Plank T (2013) Functional and structural brain modifications induced by oculomotor training in patients with age-related macular degeneration. Front Psychol 4:428

    Article  PubMed  PubMed Central  Google Scholar 

  36. Plank T, Rosengarth K, Schmalhofer C, Goldhacker M, Brandl-Rühle S, Greenlee MW (2014) Perceptual learning in patients with macular degeneration. Front Psychol 5:1189

    Article  PubMed  PubMed Central  Google Scholar 

  37. Casco C, Barollo M, Contemori G, Battaglini L (2017) The Effects of Aging on Orientation Discrimination. Frontiers in aging neuroscience 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Casco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Casco, C. (2018). Neurobehavioral Rehabilitation of Visual Deficits in Older Patients. In: Masiero, S., Carraro, U. (eds) Rehabilitation Medicine for Elderly Patients. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-57406-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57406-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57405-9

  • Online ISBN: 978-3-319-57406-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics