Skip to main content

Thermo-Mechanical Simulation of Hard Turning with Macroscopic Models

  • Chapter
  • First Online:
Thermal Effects in Complex Machining Processes

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Based on the concept of generalized stresses, a multi-mechanism model has been developed concerning asymmetric visco-plasticity, asymmetric hardness dependency and transformation induced plasticity (TRIP), which are decisive phenomena affecting the process-related ductility in hard turning. The asymmetric effects are taken into account using the concept of weighting functions related to stress modes such as tension, compression and shear. The model also considers the phase transformations between martensite and austenite during the material heating as well as austenite and white layer formation due to the so-called reverse martensite transformation. Hardness modifications as a result of the white layer formation are considered. Moreover, the model is specialized for chrome bearing steel AISI 52100 and applied in cutting simulations using the commercial Finite-Element-Method (FEM) software systems ABAQUS and Deform. The evaluation of the simulation results enables the analysis of the influence of crucial actuating variables on the machining accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acht, C., Dalgiç, M., Frerichs, F., Hunkel, M., Irretier, A., Lübben, T., Surm, H.: Ermittlung der materialdaten zur simulation des Durchhärtens von komponenten aus 100Cr6—Teil 1. HTM J. Heat Treat. Mater. 63, 234–244 (2008)

    Article  Google Scholar 

  2. Ahrens, U.: Beanspruchungsabhängiges Umwandlungsverhalten und Umwandlungsplastizität niedrig legierter Stähle mit unterschiedlich hohen Kohlenstoffgehalten, Dissertation, University of Paderborn, Germany (2003)

    Google Scholar 

  3. Ammar, K., Appolaire, B., Cailletaud, G., Feyel, F., Forest, S.: Finite element formulation of a phase field model based on the concept of generalized stresses. Comput. Mater. Sci. 45, 800–805 (2009)

    Article  Google Scholar 

  4. Biermann, D., Liedschulte, M.: Plasmauntersttztes drehen von hartlegierungen auf eisenbasis mit PKB. Ind. Diamanten Rundschau 28(2), 71–77 (1994)

    Google Scholar 

  5. Biermann, D., Höhne, F., Sieben, B., Zabel, A.: Finite element modeling and three-dimensional simulation of the turning process incorporating the material hardness. Int. J. Mater. Form. 3–1, 459–462 (2010)

    Article  Google Scholar 

  6. Bökenheide, S., Wolff, M., Dalgic, M., Lammers, D., Linke, D.: Creep, phase transformations and transformation-induced plasticity of 100Cr6 steel during heating. In: Zoch, H.W., Lübben, T. (eds.) Proceedings of 3rd International Conference on Distortion Engineering, Bremen, Germany, 14–16, September (IWT Bremen), pp 411–418 (2012)

    Google Scholar 

  7. Byrne, G., Dornfeld, D., Denkena, B.: Advancing cutting technology. CIRP Annals 52(2), 483–507 (2003)

    Article  Google Scholar 

  8. Cheng, C., Mahnken, R.: A multi-mechanism model for cutting simulations based on the concept of generalized stresses. Comput. Mater. Sci. 100B, 144–158 (2015)

    Article  Google Scholar 

  9. Denis, S., Simon, A., Beck, G.: Analysis of the thermomechanical behaviour of steel during martensitic quenching and calculation of internal stresses, Hrsg.: Macherauch, E., Hauk, V., pp. 211–238 (1983)

    Google Scholar 

  10. Forest, S., Ammar, K., Appolaire, B.: Micromorphic vs. phase-field approaches for gradient viscoplasticity and phase transformations. Lecture Notes in Applied and Computational Mechanics, vol. 59, pp. 69–88 (2011)

    Google Scholar 

  11. Forest, S., Aifantis, E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2011)

    Article  MATH  Google Scholar 

  12. Griffiths, B.J.: Mechanisms of white layer generation with reference to machining and deformation processes. Trans. ASME J. Tribol. 109, 525–530 (1987)

    Article  Google Scholar 

  13. Gurtin, M.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halle, T.: Zusammenhänge zwischen Spanvorgängen und dem mechanischen Werkstoffverhalten bei hohen Dehnungsgeschwindigkeiten, Dissertation, Technical University of Chemnitz, Germany (2005)

    Google Scholar 

  15. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. Huh, H., Kang, W.J.: Crash-worthiness assessment of thin-walled structures with the high-strength steel sheet. Int. J. of Veh. Des. 30(1/2) (2002)

    Google Scholar 

  17. Irretier, A.: Abschlussbericht Projekt C1 “Stoffwertebestimmung”, Sonderforschungsbereichs 570 “Distorsion Engineering”. University of Bremen, Germany (2008)

    Google Scholar 

  18. Iwamoto, T., Tsuta, T., Tomita, T.: Investigation on deformation mode dependence of strain-induced martensitic transformation in TRIP steels and modeling of transformation kinetics. Int. J. Mech. Sci. 40(2–3), 173–182 (1998)

    Article  Google Scholar 

  19. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strain rates and high temperatures. In: Proceedings 7th International Symposium on Ballistics, The Hague, pp. 541–547 (1983)

    Google Scholar 

  20. Koistinen, D.P., Marburger, R.E.: A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallica 7, 59–60 (1959)

    Article  Google Scholar 

  21. Leblond, J.B., Devaux, J.: A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall. 32, 137–146 (1984)

    Article  Google Scholar 

  22. Leblond, J.B.: Mathematical modelling of transformation plasticity in steels II: coupling with strain hardening phenomena. Int. J. of Plast. 5, 537–591 (1989)

    Google Scholar 

  23. Mahnken, R.: Creep simulation of asymmetric effects by use of stress mode dependent weighting functions. Int. J. Solids Struct. 40, 6189–6209 (2003)

    Article  MATH  Google Scholar 

  24. Mahnken, R., Johansson, M., Runesson, K.: Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm. Eng. Comput. 15(7), 925–955 (1998)

    Article  MATH  Google Scholar 

  25. Mahnken, R.: Identification of material parameters for constitutive equations, In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.), Encyclopedia of Computational Mechanics, vol. 2, Chapter 19. Wiley Ltd, Chichester (2004)

    Google Scholar 

  26. Mahnken, R., Wolff, M., Cheng, C.: A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation. Int. J. Solids Struct. 50, 3045–3066 (2013)

    Article  Google Scholar 

  27. Maugin, G.A., Metrikine, A.V.: Mechanics of Generalized Continua, One Hundred Years After the Cosserats. Springer, Berlin, Heidelberg (2010)

    MATH  Google Scholar 

  28. Ramesh, A., Melkote, S.N.: Modeling of white layer formaion under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int. J. Mach. Tools Manuf. 48, 402–414 (2007)

    Article  Google Scholar 

  29. Rech, J., Moisan, A.: Surface integrity in finish hard turning of case hardened steels. Int. J. Mach. Tools Manuf. 43, 543–550 (2003)

    Article  Google Scholar 

  30. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Mechanics and Materials, Springer, Berlin (1998)

    MATH  Google Scholar 

  31. Stouffer, D.C., Dame, L.T.: Inelastic Deformation of Metals. Wiley, New York (1996)

    Google Scholar 

  32. Spitzig, W.A., Sober, R.J., Richmond, O.: Pressure dependence of yielding and associated volume expansion in tempered martensite. Acta Metall. 23, 885–893 (1975)

    Article  Google Scholar 

  33. Tönshoff, H.K., Arendt, C., Ben, A.R.: Cutting of hardened steel. CIRP Annals 49(2), 547–566 (2000)

    Article  Google Scholar 

  34. Uhlmann, E., Ivanov, I.M.: Zerspankraftsimulation beim Hartdrehen Dreidimensionale Modellierung des Hartdrehens zur Zerspankraftberechnung und Werkzeugoptimierung, wt Werkstattstechnik. 1(2), 10–15 (2012)

    Google Scholar 

  35. Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C.: FEM modeling of hard turning with consideration of viscoplastic asymmetry and phase transformation. In: Proceedings of the XXIV CIRP Sponsored Conference on Supervising and Diagnostics of Machining Systems, 11–14 March 2013, Karpacz, Poland (2013)

    Google Scholar 

  36. Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C.: A novel finite element approach to modeling hard turning in due consideration of the viscoplastic asymmetry effect. In: Proceedings of the 15th CIRP Conference on Modelling of Machining Operations, 11–12 June 2015, Karlsruhe, Germany (2015)

    Google Scholar 

  37. Umbrello, D., Hua, J., Shivpuri, R.: Hardness-based flow stress and fracture models for numerical simulation of hard machining AISI 52100 bearing steel. Mater. Sci. Eng. A 374, 90–100 (2004)

    Google Scholar 

  38. Umbrello, D., Ambrogio, G., Filice, L., Shivpuri, R.: An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning. J. Mater. Process. Technol. 189, 143–152 (2007)

    Article  Google Scholar 

  39. Umbrello, D., Filice, L.: Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. Annals CIRP 58(1), 73–76 (2009)

    Article  Google Scholar 

  40. Zwirlein, O.: Die Beeinflussung der mechanischen Eigenschaften von gehrtetem Wlzlagerstahl 100Cr6 durch hydrostatischen Druck. Materialwissenschaft und Werkstofftechnik 8(10), 344–353 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is based on investigations of SPP 1480 which is kindly supported by the Deutsche Forschungsgemeinschaft (DFG). Furthermore, we gratefully acknowledge the support of the company Nordmetall, Adorf, Germany, for performing the mechanical tests related to the asymmetric visco-plasticity and hardness dependency and Stiftung Institut für Werkstofftechnik (IWT), University of Bremen, for performing the dilatometer tests related to the TRIP-strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Uhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Uhlmann, E., Mahnken, R., Ivanov, I.M., Cheng, C. (2018). Thermo-Mechanical Simulation of Hard Turning with Macroscopic Models. In: Biermann, D., Hollmann, F. (eds) Thermal Effects in Complex Machining Processes. Lecture Notes in Production Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57120-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57120-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57119-5

  • Online ISBN: 978-3-319-57120-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics