Skip to main content

Pharmacodynamic Evaluation: Infectious Diseases

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology
  • 479 Accesses

Abstract

The past decades have witnessed an rise in the number of multidrug resistant bacteria, concurrent drug failures, and declining cure rates of several fatal bacterial infectious diseases. This has culminated in evaluation of existing drug regimens. An extensive evaluation of pharmacodynamics and pharmacokinetics of drugs and its application for drug regimen selection has become the cornerstone for successful antibiotic therapy against fatal bacterial infections. Recent years have witnessed an upsurge in the development of diverse models for preclinical and clinical pharmacokinetic-pharmacodynamic (PK-PD) analysis and robust simulation methods. Integration of infection microbiology knowledge and PK-PD analysis in an appropriate model can lead to optimal drug regimens against several acute/chronic bacterial infections. The present chapter provides a comprehensive overview of different models citing their advantages and limitations, along with simulations for optimizing treatment regimens. Furthermore, it describes the applications of pharmacodynamic models for treatment of bacterial infections and, finally, the pathophysiological conditions leading to treatment failures and strategies to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Andes D, Craig WA (1998) In vivo activities of amoxicillin and amoxicillin-clavulanate against Streptococcus pneumoniae: application to breakpoint determinations. Antimicrob Agents Chemother 42:2375–2379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bamberger D (1997) Antibiotics: why they fail in patients who are critically ill. Crit Care Nurs Q 20:60–68

    Article  CAS  PubMed  Google Scholar 

  • Bergen PJ, Bulitta JB, Forrest A, Tsuji BT, Li J, Nation RL (2010) Pharmacokinetic/pharmacodynamic investigation of colistin against pseudomonas aeruginosa using an in vitro model. Antimicrob Agents Chemother 54:3783–3789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonate PL (2001) A brief introduction to Monte Carlo simulation. Clin Pharmacokinetic 40:15–22

    Article  CAS  Google Scholar 

  • Bush LM, Levison ME (1988) Antibiotic selection and pharmacokinetics in the critically ill. Crit Care Clin 4:299–324

    CAS  PubMed  Google Scholar 

  • Canut A, Isla A, Betriu C, Gascón AR (2012) Pharmacokinetic – pharmacodynamic evaluation of daptomycin, tigecycline, and linezolid versus vancomycin for the treatment of MRSA infections in four western European countries. Eur J Clin Microbiol Infect Dis 31(9):2227–2235

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Christophersen L, Thomsen K, Sønderholm M, Bjarnsholt T, Jensen PØ, Høiby N, Moser C (2015) Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model. J Antimicrob Chemother 70:2057–2063

    CAS  PubMed  Google Scholar 

  • Carlton KK Lee, Michael P Boyle, Marie Diener-West, Lois Brass-Ernst, Michelle Noschese, Pamela L Zeitlin (2007) Levofloxacin Pharmacokinetics in Adult Cystic Fibrosis. Chest 131 (3):796-802

    Google Scholar 

  • Craig WA, Andes D (1996) Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J 15:944–948

    Article  Google Scholar 

  • Craig, WA, Redington, J, Ebert, SC Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J. Antimicrob. Chemother. 27 (Suppl.) S29–S40 (1991).

    Google Scholar 

  • Crandon JL, Nicolau DP (2011) Pharmacodynamic approaches to optimizing beta-lactam therapy. Crit Care Clin 27:77–93

    Article  CAS  PubMed  Google Scholar 

  • Crull K, Weiss S (2011) Antibiotic control of tumor-colonizing Salmonella enterica serovar Typhimurium. Exp Biol Med 236:1282–1290

    Article  CAS  Google Scholar 

  • Czock D, Keller F (2007) Mechanism-based pharmacokinetic–pharmacodynamic modeling of antimicrobial drug effects. J Pharmacokinet Pharmacodyn 34:727–751

    Article  CAS  PubMed  Google Scholar 

  • Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drago L, De Vecchi E (2008) The safety of cefepime in the treatment of infection. Expert Opin Drug Saf 7:377–387

    Article  CAS  PubMed  Google Scholar 

  • Dryden M, Johnson AP, Ashiru-Oredope D, Sharland M (2011) Using antibiotics responsibly: right drug, right time, right dose, right duration. J Antimicrob Chemother 66:2441–2443

    Article  CAS  PubMed  Google Scholar 

  • Dudhani RV, Turnidge JD, Coulthard K, Milne RW, Rayner CR, Li J, Nation RL (2010a) Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 54:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Dudhani RV, Turnidge JD, Nation RL, Li J (2010b) fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother 65:1984–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eagye KJ, Nicolau DP, Lockhart SR, Quinn JP, Doern GV, Gallagher G, Abramson MA (2007) A pharmacodynamic analysis of resistance trends in pathogens from patients with infection in intensive care units in the United States between 1993 and 2004. Ann Clin Microbiol Antimicrob 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Felmlee MA, Morris ME, Mager DE (2012) Mechanism-based pharmacodynamic modeling BT. In: Reisfeld B, Mayeno AN (eds) Computational toxicology, vol I. Humana Press, Totowa, pp 583–600

    Chapter  Google Scholar 

  • Firsov AA, RG Vasilov, SN Vostrov, OV Kononenko, I Yu Lubenko, S H Zinner, (1999) Prediction of the antimicrobial effects of trovafloxacin and ciprofloxacin on staphylococci using an in-vitro dynamic model. Journal of Antimicrobial Chemotherapy 43 (4):483-490

    Google Scholar 

  • Foerster S, Unemo M, Hathaway LJ, Low N, Althaus CL (2016) Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol 16(1):1–11

    Article  Google Scholar 

  • Gloede J, Scheerans C, Derendorf H, Kloft C (2010) In vitro pharmacodynamic models to determine the effect of antibacterial drugs. J Antimicrob Chemother 65:186–201

    Article  CAS  PubMed  Google Scholar 

  • Hall Snyder AD, Vidaillac C, Rose W, McRoberts JP, Rybak MJ (2015) Evaluation of high-dose daptomycin versus vancomycin alone or combined with clarithromycin or rifampin against Staphylococcus aureus and S. epidermidis in a novel in vitro PK/PD model of bacterial biofilm. Infect Dis Ther 4:51–65

    Article  Google Scholar 

  • Herrmann G, Yang L, Wu H, Song Z, Wang H, Høiby N, Ulrich M, Molin S, Riethmüller J, Döring G (2010) Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis 202:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • José Pérez-Urizar, Vinicio Granados-Soto, Francisco J Flores-Murrieta, Gilberto Castañeda-Hernández, (2000) Pharmacokinetic-Pharmacodynamic Modeling. Archives of Medical Research 31 (6):539-545

    Google Scholar 

  • Lorenz A, Pawar V, Häussler S, Weiss S (2016) Insights into host–pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 590:3941–3959

    Article  CAS  PubMed  Google Scholar 

  • Mager DE, Diversity of Mechanism-Based Pharmacodynamic Models. Drug Metabolism and Disposition 31 (5):510-518

    Google Scholar 

  • McKinnon PS, Davis SL (2004) Pharmacokinetic and pharmacodynamic issues in the treatment of bacterial infectious diseases. Eur J Clin Microbiol Infect Dis 23:271–288

    Article  CAS  PubMed  Google Scholar 

  • Meibohm B, Derendorf H (2002) Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci 91:18–31

    Article  CAS  PubMed  Google Scholar 

  • Michael J, Barth A, Kloft C, Derendorf H (2014) Pharmacodynamic in vitro models to determine the effect of antibiotics. In: Vinks AA, Derendorf H, Mouton JW (eds) Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer New York, New York, pp 81–112

    Chapter  Google Scholar 

  • Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43:925–942

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW (2014) Setting clinical MIC breakpoints from a PK/PD point of view: it is the dose that matters. In: Vinks AA, Derendorf H, Mouton JW (eds) Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer New York, New York, pp 45–61

    Chapter  Google Scholar 

  • Mouton J, Dudley M, Cars O, Derendorf H, Drusano G (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55:601–607

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Brown DFJ, Apfalter P, Cantón R, Giske CG, Ivanova M, MacGowan AP, Rodloff A, Soussy C-J, Steinbakk M, Kahlmeter G (2012) The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 18:E37–E45

    Article  CAS  PubMed  Google Scholar 

  • Nation RL, Bergen PJ, Li J (2014) Pharmacokinetics and pharmacodynamics of colistin BT. In: Vinks AA, Derendorf H, Mouton JW (eds) Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer New York, New York, pp 351–380

    Chapter  Google Scholar 

  • Nicolau DP (2003) Optimizing outcomes with antimicrobial therapy through pharmacodynamic profiling. J Infect Chemother 9:292–296

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EI, Friberg LE (2013) Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 65:1053–1090

    Article  PubMed  Google Scholar 

  • Nuermberger E, Grosset J (2004) Pharmacokinetic and pharmacodynamic issues in the treatment of mycobacterial infections. Eur J Clin Microbiol Infect Dis 23:243–255

    Article  CAS  PubMed  Google Scholar 

  • Parra-Ruiz J, Vidaillac C, Rose WE, Rybak MJ (2010) Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination with clarithromycin or rifampin in a novel in vitro model of Staphylococcus aureus biofilm. Antimicrob Agents Chemother 54:4329–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar V, Crull K, Komor U, Kasnitz N, Frahm M, Kocijancic D, Westphal K, Leschner S, Wolf K, Loessner H, Rohde M, Häussler S, Weiss S (2014) Murine solid tumours as a novel model to study bacterial biofilm formation in vivo. J Intern Med 276:130–139

    Article  CAS  PubMed  Google Scholar 

  • Pawar V, Komor U, Kasnitz N, Bielecki P, Pils MC, Gocht B, Moter A, Rohde M, Weiss S, Häussler S (2015) In vivo efficacy of antimicrobials against biofilm producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 59:AAC.00194-15

    Article  Google Scholar 

  • Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR (2004) Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemothe 48:3670–3676

    Article  CAS  Google Scholar 

  • Roberts J, Lipman J (2009) Pharmacokinetic issues for antibiotics in the critically ill patient pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37:840–851

    Article  CAS  PubMed  Google Scholar 

  • Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T (2015) Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol 427:3628–3645

    Article  CAS  PubMed  Google Scholar 

  • Saltoglu N, Dalkiran A, Tetiker T, Bayram H, Tasova Y, Dalay C, Sert M (2010) Piperacillin/tazobactam versus imipenem/cilastatin for severe diabetic foot infections: a prospective, randomized clinical trial in a university hospital. Eur Soc Clin Infect Dis 16:1252–1257

    CAS  Google Scholar 

  • Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK (2013) Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 13:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Scaglione F, Paraboni L (2006) Influence of pharmacokinetics/pharmacodynamics of antibacterials in their dosing regimen selection. Expert Rev Anti-Infect Ther 4:479–490

    Article  CAS  PubMed  Google Scholar 

  • Schuck EL, Dalhoff A, Stass H, Derendorf H (2005) Pharmacokinetic/pharmacodynamic (PK/PD) evaluation of a once-daily treatment using ciprofloxacin in an extended-release dosage form. Infection 33:22–28

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Jusko WJ (1998) Characteristics of indirect pharmacodynamic models and applications to clinical drug responses. Br J Clin Pharmacol 45:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamma PD, Cosgrove SE, Maragakis LL (2012) Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 25:450–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tängdén T, Martín VR, Felton TW, Nielsen EI, Marchand S, Brüggemann RJ, Bulitta JB (2017) The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med 43:1021–1032

    Article  PubMed  Google Scholar 

  • Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J (2013) Innovative strategies to overcome biofilm resistance. Biomed Res Int 2013:1–13

    Article  Google Scholar 

  • Udy A, Roberts J, Boots R, Lipman J (2008) Dose adjustment and pharmacodynamic considerations for antibiotics in severe sepsis and septic shock BT. In: Rello J, Restrepo MI (eds) Sepsis: new strategies for management. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 97–136

    Chapter  Google Scholar 

  • Vaddady PK, Lee RE, Meibohm B (2010) In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Med Chem 2:1355–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent J, Bassetti M, François B, Karam G, Chastre J, Torres A, Roberts JA, Taccone FS, Rello J, Calandra T, De Backer D, Welte T (2016) Advances in antibiotic therapy in the critically ill. Crit Care 20:1–13

    Google Scholar 

  • Vishnu Dutt Sharma, Aman Singla, Manu Chaudhary, Manish Taneja, (2016) Population Pharmacokinetics of Fixed Dose Combination of Ceftriaxone and Sulbactam in Healthy and Infected Subjects. AAPS PharmSciTech 17 (5):1192-1203

    Google Scholar 

  • Wayne (2014) Performance standards for antimicrobial susceptibility testing; Twenty-fourth informational supplement, CLSI document M100–S24. In: Clinical and laboratory standards institute report. Clinical and Laboratory Standards Institute, Wayne (PA), pp 1–230

    Google Scholar 

  • Wilson SE, Graham DR, Wang W (2017) Telavancin in the treatment of concurrent Staphylococcus aureus bacteremia: a retrospective analysis of ATLAS and ATTAIN studies. Infect Dis Ther 6(3):413–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Yim J, Smith JR, Barber KE, Hallesy JA, Rybak MJ (2016) Evaluation of pharmacodynamic interactions between telavancin and aztreonam or piperacillin/tazobactam against Pseudomonas aeruginosa, Escherichia coli and methicillin-resistant Staphylococcus aureus. Infect Dis Ther 5:367–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Zervos M, Nelson M (1998) Cefepime versus ceftriaxone for empiric treatment of hospitalized patients with community-acquired pneumonia. The Cefepime study group. Antimicrob Agents Chemother 42:729–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhanel GG (2001) Influence of pharmacokinetic and pharmacodynamic principles on antibiotic selection. Curr Infect Dis Rep 3:29–34

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bhuyan, S., Felgner, S., Kocijancic, D., Pawar, V. (2018). Pharmacodynamic Evaluation: Infectious Diseases. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_53-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics