Skip to main content

Comparative Simulations of Taylor Flow with Surfactants Based on Sharp- and Diffuse-Interface Methods

  • Chapter
  • First Online:

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We present a quantitative comparison of simulations based on diffuse- and sharp-interface models for two-phase flows with soluble surfactants. The test scenario involves a single Taylor bubble in a counter-current flow. The bubble assumes a stationary position as liquid inflow and gravity effects cancel each other out, which makes the scenario amenable to high resolution experimental imaging. We compare the accuracy and efficiency of the different numerical models and four different implementations in total.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci. 22(03), 1150013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abels, H., Garcke, H., Lam, K.F., Weber, J.: Two-phase flow with surfactants: diffuse interface models and their analysis. In: Advances in Mathematical Fluid Mechanics. Springer, Basel (2016); (a contribution in this book)

    Google Scholar 

  3. Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 200(21–22), 1747–1756 (2011). doi: 10.1016/j.cma.2011.02.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Aland, S.: Time integration for diffuse interface models for two-phase flow. J. Comput. Phys. 262, 58–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aland, S.: Phase field models for two-phase flow with surfactants and biomembranes. In: Advances in Mathematical Fluid Mechanics. Springer, Basel (2016); (a contribution in this book)

    Google Scholar 

  6. Aland, S., Voigt, A.: Benchmark computations of diffuse interface models for two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 69(3), 747–761 (2011)

    Article  MathSciNet  Google Scholar 

  7. Aland, S., Lowengrub, J., Voigt, A.: A continuum model of colloid-stabilized interfaces. Phys. Fluids 23(6), 062103 (2011)

    Article  MATH  Google Scholar 

  8. Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Methods Fluids 73, 344–361 (2013)

    Article  Google Scholar 

  9. Aland, S., Lehrenfeld, C., Marschall, H., Meyer, C., Weller, S.: Accuracy of two-phase flow simulations: the Taylor flow benchmark. Proc. Appl. Math. Mech. 13(1), 595–598 (2013)

    Article  Google Scholar 

  10. Aland, S., Egerer, S., Lowengrub, J., Voigt, A.: Diffuse interface models of locally inextensible vesicles in a viscous fluid. J. Comput. Phys. 277, 32–47 (2014). http://dx.doi.org/10.1016/j.jcp.2014.08.016

    Article  MathSciNet  MATH  Google Scholar 

  11. Angeli, P., Gavriilidis, A.: Hydrodynamics of Taylor flow in small channels: a review. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 222(5), 737–751 (2008)

    Article  Google Scholar 

  12. Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229(18), 6270–6299 (2010). doi:10.1016/j.jcp.2010.04.039. http://dx.doi.org/10.1016/j.jcp.2010.04.039

    Article  MathSciNet  MATH  Google Scholar 

  13. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical computations of faceted pattern formation in snow crystal growth. Phys. Rev. E 86(1), 011604 (2012). doi:10.1103/PhysRevE.86.011604. http://dx.doi.org/10.1103/PhysRevE.86.011604

    Article  Google Scholar 

  14. Barrett, J.W., Garcke, H., Nürnberg, R.: Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Eng. 267, 511–530 (2013). doi:10.1016/j.cma.2013.09.023. http://dx.doi.org/10.1016/j.cma.2013.09.023

    Article  MathSciNet  MATH  Google Scholar 

  15. Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical computations of the dynamics of fluidic membranes and vesicles. Phys. Rev. E 92(5), 052704 (2015). doi:10.1103/PhysRevE.92.052704. http://dx.doi.org/10.1103/PhysRevE.92.052704

    Article  Google Scholar 

  16. Barrett, J.W., Garcke, H., Nürnberg, R.: On the stable numerical approximation of two-phase flow with insoluble surfactant. M2AN Math. Model. Numer. Anal. 49(2), 421–458 (2015). doi:10.1051/m2an/2014039. http://dx.doi.org/10.1051/m2an/2014039

  17. Barrett, J.W., Garcke, H., Nürnberg, R.: Stable finite element approximations of two-phase flow with soluble surfactant. J. Comput. Phys. 297, 530–564 (2015). doi:10.1016/j.jcp.2015.05.029. http://dx.doi.org/10.1016/j.jcp.2015.05.029

    Article  MathSciNet  MATH  Google Scholar 

  18. Barrett, J.W., Garcke, H., Nürnberg, R.: Stable numerical approximation of two-phase flow with a Boussinesq–Scriven surface fluid. Commun. Math. Sci. 13(7), 1829–1874 (2015). doi:10.4310/CMS.2015.v13.n7.a9. http://dx.doi.org/10.4310/CMS.2015.v13.n7.a9

    Article  MathSciNet  MATH  Google Scholar 

  19. Barrett, J.W., Garcke, H., Nürnberg, R.: A stable parametric finite element discretization of two-phase Navier–Stokes flow. J. Sci. Comp. 63(1), 78–117 (2015). doi:10.1007/s10915-014-9885-2. http://dx.doi.org/10.1007/s10915-014-9885-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Barrett, J.W., Garcke, H., Nürnberg, R.: A stable numerical method for the dynamics of fluidic biomembranes. Numer. Math. 134(4), 783–822 (2016). doi:10.1007/s00211-015-0787-5. http://dx.doi.org/10.1007/s00211-015-0787-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Boden, S., dos Santos Rolo, T., Baumbach, T., Hampel, U.: Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow. Exp. Fluids 55(7), 1768 (2014). doi:10.1007/s00348-014-1768-7. http://dx.doi.org/10.1007/s00348-014-1768-7

    Article  Google Scholar 

  22. Bretherton, F.: The motion of long bubbles in tubes. J. Fluid. Mech. 10(02), 166–188 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ganesan, S., Tobiska, L.: A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants. J. Comput. Phys. 228(8), 2859–2873 (2009). doi:10.1016/j.jcp.2008.12.035

    Article  MathSciNet  MATH  Google Scholar 

  24. Ganesan, S., Tobiska, L.: Arbitrary Lagrangian–Eulerian finite-element method for computation of two-phase flows with soluble surfactants. J. Comput. Phys. 231(9), 3685–3702 (2012). doi:10.1016/j.jcp.2012.01.018

    Article  MathSciNet  MATH  Google Scholar 

  25. Ganesan, S., Tobiska, L.: An operator-splitting finite element method for the efficient parallel solution of multi-dimensional population balance systems. Chem. Eng. Sci. 69, 59–68 (2012)

    Article  Google Scholar 

  26. Ganesan, S., Hahn, A., Held, K., Tobiska, L.: An accurate numerical method for computation of two-phase flows with surfactants. In: Eberhardsteiner, J., et al. (eds.), European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, pp. 10–14, September 2012

    Google Scholar 

  27. Ganesan, S., Hahn, A., Simon, K., Tobiska, L.: Finite element computations for dynamic liquid–fluid interfaces. In: Computational Methods for Complex Liquid-Fluid Interfaces. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  28. Garcke, H., Lam, K., Stinner, B.: Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12(8), 1475–1522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Garcke, H., Hinze, M., Kahle, C.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Appl. Numer. Math. 99, 151–171 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gollwitzer, C., Matthies, G., Richter, R., Rehberg, I., Tobiska, L.: The surface topography of a magnetic fluid – a quantitative comparison between experiment and numerical simulation. J. Fluid Mech. 571, 455–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Günther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M.A., Jensen, K.F.: Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21(4), 1547–1555 (2005). doi:10.1021/la0482406

    Article  Google Scholar 

  32. Halpern, D., Gaver, D.: Boundary element analysis of the time-dependent motion of a semi-infinite bubble in a channel. J. Comput. Phys. 115(2), 366–375 (1994)

    Article  MATH  Google Scholar 

  33. Hayashi, K., Tomiyama, A.: Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe. Int. J. Multiphase Flow 39, 78–87 (2012)

    Article  Google Scholar 

  34. Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., Tobiska, L.: Quantitative benchmark computations of two-dimensional bubble dynamics. Int. J. Numer. Methods Fluids 60(11), 1259–1288 (2009). doi:10.1002/fld.1934

    Article  MathSciNet  MATH  Google Scholar 

  35. Iliescu, T., John, V., Layton, W.J., Matthies, G., Tobiska, L.: A numerical study of a class of LES models. Int. J. Comput. Fluid Dyn. 17(1), 75–85 (2003). doi:10.1080/1061856021000009209

    Article  MathSciNet  MATH  Google Scholar 

  36. John, V.: Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations. Int. J. Numer. Methods Fluids 40(6), 775–798 (2002). doi:10.1002/fld.377

    Article  MathSciNet  MATH  Google Scholar 

  37. John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int. J. Numer. Methods Fluids 44(7), 777–788 (2004). doi:10.1002/fld.679

    Article  MATH  Google Scholar 

  38. John, V., Matthies, G.: Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Numer. Methods Fluids 37(8), 885–903 (2001). doi:10.1002/fld.195

    Article  MATH  Google Scholar 

  39. John, V., Matthies, G.: MooNMD – a program package based on mapped finite element methods. Comput. Vis. Sci. 6, 163–170 (2004). doi:10.1007/s00791-003-0120-1

    Article  MathSciNet  MATH  Google Scholar 

  40. John, V., Mitkova, T., Roland, M., Sundmacher, K., Tobiska, L., Voigt, A.: Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Eng. Sci. 64(4), 733–741 (2009). doi:10.1016/j.ces.2008.05.004; 3rd International Conference on Population Balance Modelling

    Google Scholar 

  41. Krasnyk, M., Mangold, M., Ganesan, S., Tobiska, L.: Numerical reduction of a crystallizer model with internal and external coordinates by proper orthogonal decomposition. Chem. Eng. Sci. 70(0), 77–86 (2012). doi:10.1016/j.ces.2011.05.053; 4th International Conference on Population Balance Modeling

    Google Scholar 

  42. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Heiszwolf, J.J.: Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels. Chem. Eng. Sci. 60(22), 5895–5916 (2005). doi:10.1016/j.ces.2005.03.022

    Article  Google Scholar 

  43. Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V., Tobiska, L.: Finite element methods for coupled problems in ferrohydrodynamics. In: Challenges in Scientific Computing – CISC 2002. Lecture Notes in Computational Science and Engineering, vol. 35, pp. 160–183. Springer, Berlin (2003)

    Google Scholar 

  44. Lowengrub, J., Allard, J., Aland, S.: Numerical simulation of endocytosis: Viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules. J. Comput. Phys. 309, 112–128 (2016). doi:10.1016/j.jcp.2015.12.055. https://dx.doi.org/10.1016/j.jcp.2015.12.055

    Article  MathSciNet  MATH  Google Scholar 

  45. Marschall, H., Boden, S., Lehrenfeld, C., Falconi Delgado, C., Hampel, U., Reusken, A., Wörner, M., Bothe, D.: Validation of interface capturing and tracking techniques with different surface tension treatments against a Taylor bubble benchmark problem. Comput. Fluids 102, 336–352 (2014)

    Article  Google Scholar 

  46. Matthies, G., Tobiska, L.: A two-level local projection stabilisation on uniformly refined triangular meshes. Numer. Algorithms 61, 465–478 (2012). doi:10.1007/s11075-012-9543-4

    Article  MathSciNet  MATH  Google Scholar 

  47. Muradoglu, M., Günther, A., Stone, H.A.: A computational study of axial dispersion in segmented gas-liquid flow. Phys. Fluids 19(7) (2007). doi:10.1063/1.2750295

    Google Scholar 

  48. Olgac, U., Muradoglu, M.: Effects of surfactant on liquid film thickness in the Bretherton problem. Int. J. Multiphase Flow 48, 58–70 (2013)

    Article  Google Scholar 

  49. Ratulowski, J., Chang, H.C.: Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries. J. Fluid Mech. 210, 303–328 (1990)

    Article  MATH  Google Scholar 

  50. Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., Turek, T.: Monoliths as multiphase reactors: a review. AIChE J. 50(11), 2918–2938 (2004). doi:10.1002/aic.10268

    Article  Google Scholar 

  51. Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, vol. 42. Springer, Berlin (2005)

    Google Scholar 

  52. Williams, J.L.: Monolith structures, materials, properties and uses. Catal. Today 69(1–4) (2001). doi:10.1016/S0920-5861(01)00348-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Aland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aland, S., Hahn, A., Kahle, C., Nürnberg, R. (2017). Comparative Simulations of Taylor Flow with Surfactants Based on Sharp- and Diffuse-Interface Methods. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_22

Download citation

Publish with us

Policies and ethics