Skip to main content

Experimental and Computational Analysis of Fluid Interfaces Influenced by Soluble Surfactant

  • Chapter
  • First Online:
Book cover Transport Processes at Fluidic Interfaces

Abstract

The present contribution is the result of a collaboration between the Max Planck Institute of Colloids and Interfaces and the Technical University of Darmstadt (MMA group). The main objective is to give a quantitative description of fluid interfaces influenced by surfactants, comparing experimental and computational results. Surfactants are amphiphilic molecules subject to ad- and desorption processes at fluid interfaces. In fact, they accumulate at the interface, modifying the respective interfacial properties. Since these interfaces are moving, continuously deforming and expanding, the local time-dependent interfacial coverage is the most relevant quantity. The description of such processes poses severe challenges both to the experimental and to the simulation sides. Two prototypical problems are considered for comparison between experiments and simulations: the formation of droplets under the influence of surfactants and rising bubbles in aqueous solutions contaminated by surfactants. Direct Numerical Simulations (DNS) provide valuable insights into local quantities such as local surfactant distribution and surface tension, but at high computational costs and restricted to short time frames. On the other hand, experiments can give global quantities necessary for the validation of the numerical procedures and can afford longer time frames. The two methodologies thus yield complementary results which help to understand such complex interfacial phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Correction for the surface gradient computation (GaussFaGrad) within the Finite Area method; included the corrected Rhie-Chow interpolation from Tuković et al. [94]; flux correction on the free surface to satisfy the DGCL on the surface, too.

References

  1. Adalsteinsson, D., Sethian, J.: Transport and diffusion of material quantities on propagating interfaces via level set methods. J. Comput. Phys. 185(1), 271–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adami, S., Hu, X., Adams, N.: A conservative SPH method for surfactant dynamics. J. Comput. Phys. 229(5), 1909–1926 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aland, S., Lowengrub, J., Voigt, A.: A continuum model of colloid-stabilized interfaces. Phys. Fluids 23(6), 062103 (2011)

    Article  MATH  Google Scholar 

  4. Alke, A., Bothe, D.: 3D numerical modelling of soluble surfactant at fluid interfaces based on the Volume-of-Fluid method. Fluid Dyn. Mater. Process. 5(4), 345–372 (2009)

    Google Scholar 

  5. Ambravaneswaran, B., Wilkes, E., Basaran, O.: Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14, 2606–2621 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, D.M., McFadden, G., Wheeler, A.A.: Diffuse interface in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  7. Aveyard, R., Haydon, D.: Thermodynamic properties of aliphatic hydrocarbon-water interfaces. J. Colloid Sci. 61, 2255–2261 (1965)

    Google Scholar 

  8. Bazhlekov, I., Anderson, P., Meijer, H.: Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Colloid Interface Sci. 298(1), 369–394 (2006)

    Article  Google Scholar 

  9. Bergeron, V.: Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films. Langmuir 13, 3474–3482 (1997)

    Article  Google Scholar 

  10. Blunk, D., Tessendorf, R., Buchavzov, N., Strey, R., Stubenrauch, C.: Purification, surface tensions and miscibility gaps of alkyldimethyl and alkyldiethylphosphine oxides. J. Surfactant Deterg. 10, 155–165 (2007)

    Article  Google Scholar 

  11. Bothe, D.: On the Maxwell-Stefan approach to multicomponent diffusion. In: Escher, J., Guidotti, P., Hieber, M., Mucha, P., Prüss, J.W., Shibata, Y., Simonett, G., Walker, C., Zajaczkowski, W. (eds.) Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 80, pp. 81–93. Springer, Basel (2011)

    Google Scholar 

  12. Bothe, D.: On the multi-physics of mass transfer across fluid interfaces. In: Schindler, F.P., Kraume, M. (eds.) 7th International Workshop - IBW7 on Transport Phenomena with Moving Boundaries and More, Fortschr.-Ber. VDI Reihe 3, vol. 947, pp. 1–23. VDI-Verlag, Düsseldorf (2015)

    Google Scholar 

  13. Bothe, D., Fleckenstein, S.: A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 101, 283–302 (2013)

    Article  Google Scholar 

  14. Bothe, D., Prüss, J., Simonett, G.: Well-posedness of a two-phase flow with soluble surfactant. In: Chipot, M., Escher, J. (eds.) Nonlinear Elliptic and Parabolic Problems, pp. 37–61. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  15. Brackbill, J., Kothe, D., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach. McGraw-Hill, New York (2001)

    Google Scholar 

  17. Ceniceros, H.D.: The effects of surfactants on the formation and evolution of capillary waves. Phys. Fluids 15(1), 245–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, P., Kwok, D., Prokop, R., del Rio, O., Susnar, S., Neumann, A.: Axisymmetric drop shape analysis (ADSA) and its applications. In: Möbius, D., Miller, R. (eds.) Drops and Bubbles in Interfacial Research. Studies in Interface Science, vol. 6, pp. 61–138. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  19. del Rio, O., Neumann, A.: Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops. J. Colloid Interface Sci. 196(2), 136–147 (1997)

    Article  Google Scholar 

  20. Dieter-Kissling, K., Karbaschi, M., Marschall, H., Javadi, A., Miller, R., Bothe, D.: On the applicability of Drop Profile Analysis Tensiometry at high flow rates using an Interface Tracking method. Colloids Surf. A Physicochem. Eng. Asp. 441, 837–845 (2014)

    Article  Google Scholar 

  21. Dieter-Kissling, K., Marschall, H., Bothe, D.: Direct numerical simulation of droplet formation processes under the influence of soluble surfactant mixtures. Comput. Fluids 113, 93–105 (2015)

    Article  MathSciNet  Google Scholar 

  22. Dieter-Kissling, K., Marschall, H., Bothe, D.: Numerical method for coupled interfacial surfactant transport on dynamic surface meshes of general topology. Comput. Fluids 109, 168–184 (2015)

    Article  MathSciNet  Google Scholar 

  23. Drenckhan, W., Saint-Jalmes, A.: The science of foaming. Adv. Colloid Interf. Sci. 222, 228–259 (2015)

    Article  Google Scholar 

  24. Duineveld, P.C.: The rise velocity and shape of bubbles in pure water at high Reynolds number. J. Fluid Mech. 292, 325–332 (1995)

    Article  Google Scholar 

  25. Dukhin, S., Miller, R., Loglio, G.: Drops and Bubbles in Interfacial Research, vol. 6, pp. 367–432. Elsevier, Amsterdam (1998)

    Google Scholar 

  26. Dukhin, S., Lotfi, M., Kovalchuk, V., Bastani, D., Miller, R.: Dynamics of rear stagnant cap formation at the surface of rising bubbles in surfactant solutions at large Reynolds and Marangoni numbers and for slow sorption kinetics. Colloids Surf. A 492, 127–137 (2016)

    Article  Google Scholar 

  27. Fainerman, V., Miller, R., Aksenenko, E., Makievski, A.: Equilibrium adsorption properties of single and mixed surfactant solutions. In: Fainerman, V., Möbius, D., Miller, R. (eds.) Surfactants Chemistry, Interfacial Properties, Applications. Studies in Interface Science, vol. 13, pp. 189–285. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  28. Fainerman, V., Mucic, N., Pradines, V., Aksenenko, E., Miller, R.: Adsorption of alkyltrimethylammonium bromides at water/alkane interfaces – competitive adsorption of alkanes and surfactants. Langmuir 29, 13783–13789 (2013)

    Article  Google Scholar 

  29. Fainerman, V., Aksenenko, E., Mucic, N., Javadi, A., Miller, R.: Thermodynamics of adsorption of ionic surfactants at water/alkane interfaces. Soft Matter 10, 6873–6887 (2014)

    Article  Google Scholar 

  30. Feigl, K., Megias-Alguacil, D., Fischer, P., Windhab, E.: Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem. Eng. Sci. 62(12), 3242–3258 (2007)

    Article  Google Scholar 

  31. Fleckenstein, S., Bothe, D.: Simplified modeling of the influence of surfactants on the rise of bubbles in VOF-simulations. Chem. Eng. Sci. 102, 514–523 (2013)

    Article  Google Scholar 

  32. Frumkin, A.N.: Die Kapillarkurve der höheren Fettsäuren und die Zustandsgleichung der Oberflächenschicht. Z. Phys. Chem. 116, 466–484 (1925)

    Google Scholar 

  33. Ganesan, S., Tobiska, L.: A coupled arbitrary Lagrangian-Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants. J. Comput. Phys. 228(8), 2859–2873 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ganesan, S., Tobiska, L.: Arbitrary Lagrangian-Eulerian finite-element method for computation of two-phase flows with soluble surfactants. J. Comput. Phys. 231(9), 3685–3702 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hameed, M., Siegel, M., Young, Y.N., Li, J., Booty, M., Papageorgiou, D.: Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid. J. Fluid Mech. 594, 307–340 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  37. Hoorfar, M., Neumann, A.: Axisymmetric drop shape analysis (ADSA). In: Neumann, A., David, R., Zuo, Y., Raton, B. (eds.) Applied Surface Thermodynamics, pp. 107–174. CRC, New York, London (2011)

    Google Scholar 

  38. James, A.J., Lowengrub, J.: A surfactant-conserving Volume-of-Fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685–722 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jasak, H., Tuković, Z.: Automatic mesh motion for the unstructured Finite Volume method. Trans. FAMENA 30(2), 1–20 (2006)

    Google Scholar 

  40. Javadi, A., Krägel, J., Pandolfini, P., Loglio, G., Kovalchuk, V., Aksenenko, E., Ravera, F., Liggieri, L., Miller, R.: Short time dynamic interfacial tension as studied by the growing drop capillary pressure technique. Colloids Surf. A 365, 62–69 (2010)

    Article  Google Scholar 

  41. Javadi, A., Karbaschi, M., Bastani, D., Ferri, J., Kovalchuk, V., Kovalchuk, N., Javadi, K., Miller, R.: Marangoni instabilities for convective mobile interfaces during drop exchange: experimental study and CFD simulation. Colloids Surf. A 441, 846–854 (2014)

    Article  Google Scholar 

  42. Jin, F., Stebe, K.: The effects of a diffusion controlled surfactant on a viscous drop injected into a viscous medium. Phys. Fluids 19(11), 112103 (2007)

    Article  MATH  Google Scholar 

  43. Karbaschi, M., Bastani, D., Javadi, A., Kovalchuk, V., Kovalchuk, N., Makievski, A., Bonaccurso, E., Miller, R.: Drop profile analysis tensiometry under highly dynamic conditions. Colloids Surf. A 413, 292–297 (2012)

    Article  Google Scholar 

  44. Karbaschi, M., Rahni, M.T., Javadi, A., Cronan, C., Schano, K., Faraji, S., Won, J., Ferri, J., Krägel, J., Miller, R.: Dynamics of drops – formation, growth, oscillation, detachment, and coalescence. Adv. Colloid Interface Sci. 222, 413–424 (2015)

    Article  Google Scholar 

  45. Khatri, S., Tornberg, A.K.: An embedded boundary method for soluble surfactants with interface tracking for two-phase flows. J. Comput. Phys. 256, 768–790 (2014). doi:10.1016/j.jcp.2013.09.019. http://www.sciencedirect.com/science/article/pii/S0021999113006244

    Article  MathSciNet  MATH  Google Scholar 

  46. Kovalchuk, V., Miller, R., Fainerman, V., Loglio, G.: Dilational rheology of adsorbed surfactant layers—role of the intrinsic two-dimensional compressibility. Adv. Colloid Interface Sci. 114–115, 303–313 (2005)

    Article  Google Scholar 

  47. Kralchevsky, P., Danov, K., Broze, G., Mehreteab, A.: Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of salts of various valency. Langmuir 15, 2351–2365 (1999)

    Article  Google Scholar 

  48. Krzan, M., Zawala, J., Malysa, K.: Development of steady state adsorption distribution over interface of a bubble rising in solutions of n-alkanols (C5, C8) and n-alkyl trimethyl ammonium bromides (C8, C12, C16). Colloids Surf. A 298, 42–51 (2007)

    Article  Google Scholar 

  49. Lai, M.C., Tseng, Y.H., Huang, H.: An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227(15), 7279–7293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Li, J.: The effect of an insoluble surfactant on the skin friction of a bubble. Eur. J. Mech. B Fluids 25(1), 59–73 (2006)

    Article  MATH  Google Scholar 

  51. Liggieri, L., Ravera, F., Ferrari, M., Passerone, A., Miller, R.: Adsorption kinetics of alkylphosphine oxides at water/hexane interface. 2. Theory of the adsorption with transport across the interface in finite systems. J. Colloid Interface Sci. 186, 46–52 (1997)

    Google Scholar 

  52. Loglio, G., Pandolfini, P., Miller, R., Makievski, A., Ravera, F., Liggieri, L.: Drop and bubble shape analysis as a tool for dilational rheological studies of interfacial layers. In: Möbius, D., Miller, R. (eds.) Novel Methods to Study Interfacial Layers. Studies in Interface Science, vol. 11, pp. 439–483. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  53. Lunkenheimer, K., Haage, K., Miller, R.: On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides. Colloids Surf. 22, 215–224 (1987)

    Article  Google Scholar 

  54. Malysa, K., Krasowska, M., Krzan, M.: Influence of surface active substances on bubble motion and collision with various interfaces. Adv. Colloid Interface Sci. 114–115, 205–225 (2005)

    Article  Google Scholar 

  55. Małysa, K., Zawala, J., Krzan, M., Krasowska, M.: Bubbles rising in solutions; local and terminal velocities, shape variations and collisions with free surface. In: Miller, R., Liggieri, L. (eds.) Bubble and Drop Interfaces. Progress in Colloid and Interface Science, vol. 2. CRC, Taylor & Francis, Boca Raton, London (2011)

    Google Scholar 

  56. Maze, C., Burnet, G.: A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop. Surf. Sci. 13, 451–470 (1969)

    Article  Google Scholar 

  57. Medrzycka, K., Zwierzykowski, W.: Adsorption of alkyltrimethylammonium bromides at the various interfaces. J. Colloid Interface Sci. 230, 67–72 (2000)

    Article  Google Scholar 

  58. Menon, S., Schmidt, D.P.: Conservative interpolation on unstructured polyhedral meshes: an extension of the Supermesh approach to cell-centered Finite-Volume variables. Comput. Methods Appl. Mech. Eng. 200, 2797–2804 (2011)

    Article  MATH  Google Scholar 

  59. Mooney, K., Menon, S., Schmidt, D.: A computational study of viscoelastic drop collisions. In: ILASS – Americas 22nd Annual Conference on Liquid Atomization and Spray Systems, Cincinnati (2010)

    Google Scholar 

  60. Mucic, N., Kovalchuk, N., Aksenenko, E., Fainerman, V., Miller, R.: Adsorption layer properties of alkyl trimethylammonium bromides at interfaces between water and different alkanes. J. Colloid Interface Sci. 410, 181–187 (2013)

    Article  Google Scholar 

  61. Mucic, N., Kovalchuk, N., Pradines, V., Javadi, A., Aksenenko, E., Krägel, J., Miller, R.: Dynamic properties of CnTAB adsorption layers at the water/oil interface. Colloids Surf. A 441, 825–830 (2014)

    Article  Google Scholar 

  62. Muradoglu, M., Tryggvason, G.: A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227(4), 2238–2262 (2008)

    Article  MATH  Google Scholar 

  63. Muzaferija, S., Perić, M.: Computation of free-surface flows using the Finite-Volume method and moving grids. Numer. Heat Transfer Part B Fundam. 32(4), 369–384 (1997)

    Article  Google Scholar 

  64. Oellrich, L., Schmidt-Traub, H., Brauer, H.: Theoretische Berechnung des Stofftransports in der Umgebung einer Einzelblase. Chem. Eng. Sci. 28(3), 711–721 (1973)

    Article  Google Scholar 

  65. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed – algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  66. Park, J., Hulsen, M., Anderson, P.: Numerical investigation of the effect of insoluble surfactant on drop formation in microfluidic device. Eur. Phys. J. Appl. Phys. Spec. Top. 222, 199–210 (2013)

    Google Scholar 

  67. Passerone, A., Liggieri, L., Rando, N., Ravera, F., Ricci, E.: A new experimental-method for the measurement of the interfacial-tension between immiscible fluids at zero bond number. J. Colloid Interface Sci. 146, 152–162 (1991)

    Article  Google Scholar 

  68. Patankar, S.: Numerical Heat Transfer and Fluid Flow: Computational Methods in Mechanics and Thermal Science. Hemisphere Publishing, Washington, DC (1980)

    Google Scholar 

  69. Perić, M., Kessler, R., Scheuerer, G.: Comparison of Finite-Volume numerical methods with staggered and collocated grids. Comput. Fluids 16(4), 389–403 (1988)

    Article  MATH  Google Scholar 

  70. Pesci, C., Dieter-Kissling, K., Marschall, H., Bothe, D.: Finite Volume/Finite Area Interface Tracking method for two-phase flows with fluid interfaces influenced by surfactant. In: Rahni, M.T., Karbaschi, M., Miller, R. (eds.) Progress in Colloid and Interface Science. CRC, Taylor & Francis, Boca Raton, London (2015)

    Google Scholar 

  71. Pesci, C., Marschall, H., Bothe, D.: Computational analysis of single rising bubbles influenced by soluble surfactant (2017, in preparation)

    Google Scholar 

  72. Peskin, C.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  74. Pradines, V., Fainerman, V., Aksenenko, E., Krägel, J., Mucic, N., Miller, R.: Alkyltrimethylammonium bromides adsorption at liquid/fluid interfaces in the presence of neutral phosphate buffer. Colloids Surf. A 371, 22–28 (2010)

    Article  Google Scholar 

  75. Quan, S., Schmidt, D.: A moving mesh Interface Tracking method for 3D incompressible two-phase flows. J. Comput. Phys. 221, 761–780 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Rahni, M.T., Karbaschi, M., Miller, R. (eds.): Computational Methods for Complex Liquid-Fluid Interfaces. Progress in Colloid and Interface Science, vol. 5. CRC/Taylor & Francis, Boca Raton/London (2016)

    Google Scholar 

  77. Rayner, M., Trägardh, G., Trägardh, C.: The impact of mass transfer and interfacial expansion rate on droplet size in membrane emulsification processes. Colloids Surf. A 266, 1–17 (2005)

    Article  Google Scholar 

  78. Renardy, Y.Y., Renardy, M., Christini, V.: A new Volume-Of-Fluid formulation for surfactants and simulations of drop deformations under shear at a low viscosity ratio. Eur. J. Fluid Mech. B 21, 49–59 (2002)

    Article  MATH  Google Scholar 

  79. Rotenberg, Y., Boruvka, L., Neumann, A.: Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93(1), 169–183 (1983)

    Article  Google Scholar 

  80. Sagis, L.: The Maxwell-Stefan equations for diffusion in multiphase systems with intersecting dividing surfaces. Physica A 254(3), 365–376 (1998)

    Article  MathSciNet  Google Scholar 

  81. Savic, P.: Circulation and distortion of liquid drops falling through a viscous medium. Technical Report, National Research Council Canada, Ottawa (1953)

    Google Scholar 

  82. Schadler, V., Windhab, E.: Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination 189, 130–135 (2006)

    Article  Google Scholar 

  83. Schmidt, D., Dai, M., Wang, H., Perot, J.: Direct interface tracking of droplet deformation. Atomization Sprays 12(5–6), 721–735 (2002)

    Article  Google Scholar 

  84. Schröder, V., Behrend, O., Schubert, H.: Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. J. Colloid Interface Sci. 202, 334–340 (1998)

    Article  Google Scholar 

  85. Sczech, R., Eckert, K., Acker, M.: Convective instability in a liquid-liquid system due to complexation with a crown ether. J. Phys. Chem. A 112, 7357–7364 (2008)

    Article  Google Scholar 

  86. Severino, M., Campana, D., Giavedoni, M.: Effects of a surfactant on the motion of a confined gas-liquid interface. The influence of the Peclet number. Lat. Am. Appl. Res. 35(3), 225–232 (2005)

    Google Scholar 

  87. Sussman, M., Puckett, E.G.: A coupled Level Set and Volume-of-Fluid method for computing 3D incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  88. Tasoglu, S., Demirci, U., Muradoglu, M.: The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble. Phys. Fluids 20(4), 040805 (2008)

    Article  MATH  Google Scholar 

  89. Teigen, K., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230(2), 375–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  90. Tornberg, A.K., Engquist, B.: The segment projection method for interface tracking. Commun. Pure Appl. Math. 56(1), 47–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  91. Tryggvason, G., Bunner, B., Esmaeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: Front tracking method for the computation of multiphase flow. J. Comput. Phys. 169, 708–759 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  92. Tuković, Z.: Finite Volume method on domains of varying shape (in Croatian). Ph.D. thesis, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb (2005)

    Google Scholar 

  93. Tuković, Z., Jasak, H.: Simulation of free-rising bubble with soluble surfactant using moving mesh Finite Volume/Area method. In: 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF/NTNU, Trondheim (2008)

    Google Scholar 

  94. Tuković, Z., Jasak, H.: A moving mesh Finite Volume Interface Tracking method for surface tension dominated interfacial fluid flow. Comput. Fluids 55, 70–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  95. van der Graaf, S., Nisisako, T., Schroen, C., van der Sman, R., Boom, R.: Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22, 4144–4152 (2006)

    Article  Google Scholar 

  96. van der Zwan, E., Schröen, K., van Dijke, K., Boom, R.: Visualization of droplet break-up in pre-mixmembrane emulsification using microfluidic devices. Colloids Surf. A 277, 223–229 (2006)

    Article  Google Scholar 

  97. Wegener, M., Grünig, J., Stüber, J., Paschedag, A., Kraume, M.: Transient rise velocity and mass transfer of a single drop with interfacial instabilities - experimental investigations. Chem. Eng. Sci. 62, 2967–2978 (2007)

    Article  Google Scholar 

  98. Weller, H., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998)

    Article  Google Scholar 

  99. Xu, J.J., Zhao, H.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573–594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  100. Xu, J.J., Li, Z., Lowengrub, J., Zhao, H.: Numerical study of surfactant-laden drop-drop interactions. Commun. Comput. Phys. 10(2), 453–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  101. Xu, J.J., Huang, Y., Lai, M.C., Li, Z.: A coupled immersed interface and level set method for three-dimensional interfacial flows with insoluble surfactant. Commun. Comput. Phys. 15(2), 451–469 (2014)

    Article  MathSciNet  Google Scholar 

  102. Yang, X., James, A.: An arbitrary Lagrangian-Eulerian (ALE) method for interfacial flows with insoluble surfactants. Fluid Dyn. Mater. Process. 3(1), 65–96 (2007)

    MathSciNet  MATH  Google Scholar 

  103. Zhang, J., Eckmann, D., Ayyaswamy, P.: A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport. J. Comput. Phys. 214(1), 366–396 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG) for financial support within the Priority Program SPP1506 “Transport Processes at Fluidic Interfaces” [BO1879/9-2, Mi418/18-2] and the Technische Universität Darmstadt HHLR (High Performance Computer center) for the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pesci, C., Marschall, H., Kairaliyeva, T., Ulaganathan, V., Miller, R., Bothe, D. (2017). Experimental and Computational Analysis of Fluid Interfaces Influenced by Soluble Surfactant. In: Bothe, D., Reusken, A. (eds) Transport Processes at Fluidic Interfaces. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-56602-3_15

Download citation

Publish with us

Policies and ethics