Skip to main content

Two-Dimensional Periodic Structures Recorded in Nanocomposites by Holographic Method: Features of Formation, Applications

  • Conference paper
  • First Online:
Nanophysics, Nanomaterials, Interface Studies, and Applications (NANO 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 195))

Included in the following conference series:

Abstract

Two-dimensional (2D) photonic crystals formed by ordering of nanoparticles (NPs) of different nature in the polymeric matrix were studied. For 2D structure fabrication, we used a modified method of holographic lithography. Interfering beams (3, 4, 6) were formed using a spatial light modulator that provides a continuous phase shift between recording beams, variation of the structure symmetries as well as localization of polymer- and NP-enriched areas. The use of 2D structures in narrow-band lasers with distributed feedback and low lasing excitation threshold was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riechel S, Kallinger C, Lemmer U, Feldmann J (2000) A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Appl Phys Lett 77:2310–2312

    Article  ADS  Google Scholar 

  2. Vasdekis A, Turnbull G, Samuel I, Andrew P, Barnes W (2005) Low threshold edge emitting polymer distributed feedback laser based on a square lattice. Appl Phys Lett 86:161102

    Article  ADS  Google Scholar 

  3. Turnbull G, Andrew P, Barnes W, Samuel I (2003) Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl Phys Lett 82:313–315

    Article  ADS  Google Scholar 

  4. Jakubiak R, Tondiglia VP, Natarajan LV, Sutherland RL, Lloyd P, Bunning TJ, Vaia R (2005) Dynamic lasing from all-organic two-dimensional photonic crystals. Adv Mater 17:2807–2811

    Article  Google Scholar 

  5. Heliotis G, Xia R, Turnbull GA, Andrew P, Barnes WL, Samuel IDW, Bradley DDC (2004) Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv Func Mater 14:91–97

    Article  Google Scholar 

  6. Harbers R, Strasser P, Caimi D, Mahrt RF, Moll N, Offrein BJ, Erni D, Bachtold W, Scherf U (2005) Enhanced feedback in organic photonic-crystal lasers. Appl Phys Lett 87:151121

    Article  ADS  Google Scholar 

  7. Raineri F, Vecchi G, Yacomotti AM, Seassal C, Viktorovitch P, Raj R, Levenson A (2005) Doubly resonant photonic crystal for efficient laser operation: pumping and lasing at low group velocity photonic modes. Appl Phys Lett 86:011116

    Article  ADS  Google Scholar 

  8. Liu YJ, Sun XW (2006) Electrically tunable two-dimensional photonic crystal fabricated by a single diffractive element. Appl Phys Lett 89:171101

    Article  ADS  Google Scholar 

  9. Luo D, Sun XW, Dai HT, Demir HV, Yang HZ, Ji W (2010) Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. J Appl Phys 108:013106

    Article  ADS  Google Scholar 

  10. Luo D, Sun XW, Dai HT, Demir HV, Yang HZ, Ji W (2010) Electrically tunable lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals. Appl Phys Lett 97:081101

    Article  ADS  Google Scholar 

  11. Jørgensen MM, Petersen SR, Christiansen MB, Buß T, Smith CLC, Kristensen A (2010) Influence of index contrast in two dimensional photonic crystal lasers. Appl Phys Lett 96:231115

    Google Scholar 

  12. Ge C, Lu M, Tan Y, Cunningham BT (2011) Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping. Opt Exp 19:5086–5092

    Article  ADS  Google Scholar 

  13. He Q, Zaquine I, Maruani A, Frey R (2006) Band-edge-induced Bragg diffraction in two-dimensional photonic crystals. Opt Lett 31:1184

    Article  ADS  Google Scholar 

  14. Nair RV, Vijaya R (2010) Photonic crystal sensors: an overview. Progr Quant Electr 34:89–134

    Article  ADS  Google Scholar 

  15. Endo T (2014) Polymer-based two dimensional photonic crystal for biosensing application. In: Symposium proceedings progress in electromagnetic research, Guangzhou, 25–28 Aug 2014

    Google Scholar 

  16. Stehr J, Grewett J, Shimdler F, Sperling R, Plessen G, Lemmer U, Lupton JM, Klar TA, Feldman J, Holleitner AW, Forster M, Scherf U (2003) A low threshold polymer laser based on metallic nanoparticle gratings. Adv Mater 15:1726–1729

    Article  Google Scholar 

  17. Mikhailov V, Elliott J, Wurtz G, Bayvel P, Zayats AV (2007) Dispersing light with surface plasmon polaritonic crystals. Phys Rev Lett 99:083901

    Article  ADS  Google Scholar 

  18. Lamprecht B, Schider G, Lechner RT, Ditlbacher H, Krenn JR, Leitner A, Aussenegg FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84:4721–4724

    Article  ADS  Google Scholar 

  19. Tikhomirov SA, Buganov OV, Ponyavina AN, Yezhov PV, Kokhtich LM, Smirnova TN (2014) Time-dependent absorption spectra of photopolymeric films with periodic structure of silver. J Appl Spectr (Belarus) 81:710–716

    Google Scholar 

  20. Berger V, Gauthier-Lafaye O, Costard E (1997) Photonic band gaps and holography. J Appl Phys 82:60–64

    Article  ADS  Google Scholar 

  21. Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield A (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404:53–56

    Article  ADS  Google Scholar 

  22. Maldovan M, Thomas E (2009) Periodic materials and interference lithography. Wiley-VCH Verlag GmbH & Co/KGaA, Weinheim

    Google Scholar 

  23. Kondo T, Juodkazis S, Mizeikis V, Misawa H (2006) Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8. Opt Expr 14:7943–7953

    Article  ADS  Google Scholar 

  24. Su H, Zhong YC, Wang X, Zheng XG, Xu JF, Wang HZ (2003) Effects of polarization on laser holography for microstructure fabrication. Phys Rev E 67:056619

    Article  ADS  Google Scholar 

  25. Moon JH, Yang SM, Pine D, Chang W (2004) Multiple-exposure holographic lithography with phase shift. Appl Phys Lett 85:4184–4186

    Article  ADS  Google Scholar 

  26. Kondo T, Matsuo S, Juodkazis S, Misawa H (2001) A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals. Appl Phys Lett 79:725–727

    Article  ADS  Google Scholar 

  27. Yang Y, Wang GP, Xie J, Zhang S (2005) Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography. Appl Phys Lett 86:173108

    Article  ADS  Google Scholar 

  28. Sakhno OV, Goldenberg LM, Stumpe J, Smirnova TN (2009) Effective volume holographic structures based on organic-inorganic photopolymer nanocomposites. J Opt A Pure Appl Opt 11:024013

    Article  ADS  Google Scholar 

  29. Sakhno OV, Smirnova TN, Goldenberg LM, Stumpe J (2008) Holographic pattering of luminescent photopolymer nanocomposites. Mater Sci Eng C 28:28–35

    Article  Google Scholar 

  30. Smirnova TN, Kokhtych LM, Kutsenko AS, Sakhno OV, Stumpe J (2009) Fabrication of periodic polymer/silver nanoparticles structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure. Nanotechnology 20:405301

    Article  Google Scholar 

  31. Boguslawski M, Rose P, Denz C (2011) Increasing the structural variety of discrete nondiffracting wave fields. Phys Rev A 84:013832

    Article  ADS  Google Scholar 

  32. Durnin J (1987) Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 4:651–654

    Article  ADS  Google Scholar 

  33. Sakhno OV, Smirnova TN, Stumpe J (2011) Distributed feedback dye laser holographically induced in improved organic-inorganic photocurable nanocomposites. Appl Phys B 103:907–916

    Article  ADS  Google Scholar 

  34. Smirnova TN, Sakhno OV, Fitio VM, Gritsai Yu, Stumpe J (2014) Simple and high performance DFB laser based on dye-doped nanocomposite volume grating. Laser Phys Lett 11:125804

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant of the Target Comprehensive Program of Fundamental Research of National Academy of Sciences of Ukraine “The Fundamental Problems of Creation of New Nanomaterials and Nanotechnologies” (Project 3/16-H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Hryn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hryn, V.O., Yezhov, P.V., Smirnova, T.N. (2017). Two-Dimensional Periodic Structures Recorded in Nanocomposites by Holographic Method: Features of Formation, Applications. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanomaterials, Interface Studies, and Applications . NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-56422-7_21

Download citation

Publish with us

Policies and ethics