Skip to main content

Dose Quantification in UV Phototherapy

  • Chapter
  • First Online:
Book cover Ultraviolet Light in Human Health, Diseases and Environment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 996))

Abstract

Ultraviolet light has long been used to alleviate a number of skin conditions, and its efficacy is well known. However, over-exposure to ultraviolet radiation has a number of detrimental effects and thus it is vital to maintain a dose to skin within the therapeutic window. To maximise treatment gain whilst circumventing potential side-effects of over-exposure requires accurate determination of irradiance and skin-dose. This is complicated by the fact that ultraviolet radiation is essentially absorbed at the skin surface, which means that changing orientation of the patient and source can modulate dose received. In addition, irregular patient shapes mean dose must be carefully calibrated. This chapter focuses on methods of determination of dose, clinical protocols for quantifying radiation dose received and mathematical models for estimating these quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grimes DR (2015) Ultraviolet radiation therapy and UVR dose models. Med Phys 42(1):440

    Article  PubMed  Google Scholar 

  2. Ellinger F (1958) Medical radiation biology. Cancer 11(4):872–872

    Google Scholar 

  3. Diffey BL (1980) Ultraviolet radiation physics and the skin. Phys Med Biol 25(3):405

    Article  CAS  PubMed  Google Scholar 

  4. Commission de l’Eclairage (1970) International lighting vocabulary

    Google Scholar 

  5. Diffey B, Hart G (1997) Ultraviolet and blue-light phototherapy: principles, sources, dosimetry and safety. Institute of Physics and Engineering in Medicine, York

    Google Scholar 

  6. Moseley H, Association HP et al (1988) Non-ionising radiation: microwaves, ultraviolet and laser radiation. Adam Hilger Bristol, Philadelphia

    Google Scholar 

  7. Diffey BL (2002) What is light? Photodermatol Photoimmunol Photomed 18(2):68–74

    Article  PubMed  Google Scholar 

  8. Murdoch JB (1985) Illumination engineering: from Edison’s lamp to the laser. Macmillan, New York

    Google Scholar 

  9. Grundmann-Kollmann M, Behrens S, Podda M, Peter RU, Kaufmann R, Kerscher M (1999) Phototherapy for atopic eczema with narrow-band UVB. J Am Acad Dermatol 40(6):995–997

    Article  CAS  PubMed  Google Scholar 

  10. Reynolds NJ, Franklin V, Gray JC, Diffey BL, Farr PM (2001) Narrow-band ultraviolet B and broad-band ultraviolet A phototherapy in adult atopic eczema: a randomised controlled trial. Lancet 357(9273):2012–2016

    Article  CAS  PubMed  Google Scholar 

  11. Bhatnagar A, Kanwar A, Parsad D, De D (2007) Comparison of systemic PUVA and NB-UVB in the treatment of vitiligo: an open prospective study. J Eur Acad Dermatol Venereol 21(5):638–642

    CAS  PubMed  Google Scholar 

  12. Honigsmann H (2008) Polymorphous light eruption. Photodermatol Photoimmunol Photomed 24(3):155–161

    Article  PubMed  Google Scholar 

  13. Ohe S, Danno K, Sasaki H, Isei T, Okamoto H, Horio T (2004) Treatment of acquired perforating dermatosis with narrowband ultraviolet B. J Am Acad Dermatol 50(6):892–894

    Article  PubMed  Google Scholar 

  14. Pavlotsky F, Nathansohn N, Kriger G, Shpiro D, Trau H (2008) Ultraviolet-B treatment for cutaneous lichen planus: our experience with 50 patients. Photodermatol Photoimmunol Photomed 24(2):83–86

    Article  PubMed  Google Scholar 

  15. Wackernagel A, Legat FJ, Hofer A, Quehenberger F, Kerl H, Wolf P (2007) Psoralen plus UVA vs. UVB-311 nm for the treatment of lichen planus. Photodermatol Photoimmunol Photomed 23(1):15–19

    Article  PubMed  Google Scholar 

  16. Diederen PV, van Weelden H, Sanders CJ, Toonstra J, van Vloten WA (2003) Narrowband UVB and psoralen-UVA in the treatment of early-stage mycosis fungoides: a retrospective study. J Am Acad Dermatol 48(2):215–219

    Article  PubMed  Google Scholar 

  17. Parrish JA, Jaenicke KF, Anderson RR (1982) Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol 36(2):187–191

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro DT, Madzak C, Sarasin A, Mascio PD, Sies H, Menck CFM (1992) Singlet oxygen induced DNA damage and mutagenicity in a singlestranded SV40-based shuttle vector. Photochem Photobiol 55(1):39–45

    Article  CAS  PubMed  Google Scholar 

  19. TB F. The validity and practicality of sun-reactive skin types i through vi. Arch Dermatol 1988; 124(6):869–871

    Google Scholar 

  20. Sliney DH (1997) Ultraviolet radiation effects upon the eye: problems of dosimetry. Radiat Prot Dosim 72(3–4):197–206

    Article  Google Scholar 

  21. Fisher GJ, Wang Z, Datta SC, Varani J, Kang S, Voorhees JJ (1997) Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 337(20):1419–1429

    Article  CAS  PubMed  Google Scholar 

  22. de Gruijl FR (1999) Skin cancer and solar {UV} radiation. Eur J Cancer 35(14):2003–2009

    Article  PubMed  Google Scholar 

  23. Fitzpatrick TB (1975) Soleil et peau. J Med Esthet 2(7):33–34

    Google Scholar 

  24. Grimes DR (2010) Development of a computational dose model for use in ultraviolet phototherapy, PhD thesis

    Google Scholar 

  25. Taylor D, Anstey A, Coleman A, Diffey B, Farr P, Ferguson J et al (2002) Guidelines for dosimetry and calibration in ultraviolet radiation therapy: a report of a British Photodermatology Group workshop. Br J Dermatol 146(5):755–763

    Article  CAS  PubMed  Google Scholar 

  26. Pye SD, Martin CJ (2000) A study of the directional response of ultraviolet radiometers: I. Practical evaluation and implications for ultraviolet measurement standards. Phys Med Biol 45(9):2701

    Article  CAS  PubMed  Google Scholar 

  27. Coleman AJ, Collins M, Saunders JE (2000) Traceable calibration of ultraviolet meters used with broadband, extended sources. Phys Med Biol 45(1):185

    Article  CAS  PubMed  Google Scholar 

  28. Martin C, Pye S (2000) A study of the directional response of ultraviolet radiometers: II. Implications for ultraviolet phototherapy derived from computer simulations. Phys Med Biol 45(9):2713

    Article  CAS  PubMed  Google Scholar 

  29. Moseley H (2005) Ultraviolet A dosimetry in photopatch test centres in Europe. J Eur Acad Dermatol Venereol 19(2):187–190

    Article  CAS  PubMed  Google Scholar 

  30. Moseley H (2001) Scottish UV dosimetry guidelines, ScUViDo. Photodermatol Photoimmunol Photomed 17(5):230–233

    Article  CAS  PubMed  Google Scholar 

  31. Amatiello H, Martin CJ (2006) Ultraviolet phototherapy: review of options for cabin dosimetry and operation. Phys Med Biol 51(2):299

    Article  CAS  PubMed  Google Scholar 

  32. Grimes DR, Martin CJ, Phanco G (2012) Investigations of cabin design in UV phototherapy. Med Phys 39(6):3019–3025

    Article  PubMed  Google Scholar 

  33. Currie G, Evans A, Smith D, Martin C, McCalman S, Bilsland D (2001) An automated dosimetry system for testing whole-body ultraviolet phototherapy cabinets. Phys Med Biol 46(2):333

    Article  CAS  PubMed  Google Scholar 

  34. Grimes DR, Robbins C, OHare NJ (2010) Dose modeling in ultraviolet phototherapy. Med Phys 37(10):5251–5257

    Article  PubMed  Google Scholar 

  35. Jackson C, Thomas R (1979) The specular reflectivity of bright anodized aluminium. Trans Inst Met Finish 57(3):105–109

    Article  CAS  Google Scholar 

  36. Grimes DR, Robbins C, Martin CJ, Phanco G, OHare NJ (2011) Reflection modeling in ultraviolet phototherapy. Med Phys 38(7):4312–4320

    Article  PubMed  Google Scholar 

  37. Grimes DR (2012) A computational simulation of reflector and tube effects in ultraviolet phototherapy. Phys Med Biol 57(20):6661

    Article  PubMed  Google Scholar 

  38. Grimes DR (2016) Simulation of parabolic reflectors for ultraviolet phototherapy. Phys Med Biol 61(16):N394

    Article  CAS  Google Scholar 

  39. Duarte I, Rotter A, Malvestiti A, Silva M (2009) The role of glass as a barrier against the transmission of ultraviolet radiation: an experimental study. Photodermatol Photoimmunol Photomed 25(4):181–184

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Robert Grimes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimes, D.R. (2017). Dose Quantification in UV Phototherapy. In: Ahmad, S. (eds) Ultraviolet Light in Human Health, Diseases and Environment. Advances in Experimental Medicine and Biology, vol 996. Springer, Cham. https://doi.org/10.1007/978-3-319-56017-5_29

Download citation

Publish with us

Policies and ethics