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Abbreviations

ABC	 Activated B-cell
AI	 Allelic imbalance
BCR	 B-cell receptor
CAF	 Cancer-associated fibroblasts
CCC	 Consensus clustering classification
CNA	 Copy number alterations
DLBCL	 Diffuse large B-cell lymphoma
ECM	 Extracellular matrix
EGFR	 Epidermal growth factor receptor
HNSCC	 Head and neck squamous cell carcinomas
JUND	 Jun D proto-oncogene
LBCL	 Large B-cell lymphoma
PDXs	 Patient-derived xenografts
TAM	 Tumor-associated macrophages
TGFBR3	 Transforming growth factor b receptor 3
TNBCs	 Triple negative breast cancers
Treg	 Regulatory T-cell

�Introduction

Preclinical cancer models are of paramount importance in the development of anti-
cancer drugs. Xenograft models based on cultured cancer cell lines have played a 
key role in this process. Thus, the NCI-60 cancer cell line panel has been used for 
over 25 years for anticancer drug screening. As valuable a resource as the cell lines 
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have been, their grafts have significant limitations, such as lack of predictive power 
in drug efficacy tests as they fail to mimic the enormous complexity of human can-
cers, including their tumor heterogeneity and tissue architecture. It is also not pre-
cisely known how these cell lines differ genomically and functionally from the 
primary cancer cells from which they were derived. Moreover, they lack clinical 
information, such as treatments administered, patient outcome, response to therapy 
and stage of disease at diagnosis, etc. To overcome such limitations, transplantable 
patient-derived xenografts (PDXs) have been generated in the last decade by 
engrafting fresh human tumor tissue into immunodeficient mice. These PDXs more 
closely mimic the patients’ tumors with regard to tumor microenvironment, retain-
ing interactions between cancer cells and stromal cells. They exhibit a high degree 
of genomic stability in comparison to their parental tumors, even after serial trans-
plantation of tumor sections. As well, a PDX model significantly retains the hetero-
geneity of the tumor from which it is derived.

In this chapter, we review genomic, transcriptomic, and proteomic heterogene-
ities of PDX models, compared to parental tissues, in the light of current advances 
in research and understanding.

�Genomic and Proteomic Heterogeneity of PDX Models

Intra-tumor heterogeneity is thought to stem from two factors: (1) cell autonomous, 
including genomic, transcriptomic, and proteomic heterogeneity and (2) non-cell 
autonomous, for example, stromal heterogeneity. Tumor heterogeneity has clinical 
implications for patient-specific responses to therapy and resistance to targeted ther-
apy [1]. PDX models are capable of retaining tumor heterogeneity, so these models 
have clear advantages over traditional cell line-based models and are becoming the 
preferred tools in drug discovery and preclinical studies [2, 3].

Gaub et  al. established seven PDX models in nude mice for human colonic 
tumors (from stages B1 to D) in order to study correlations between initial tumors 
and PDX models. They used allelotyping analysis to test 45 loci (on 18 chromo-
somes) on the seven original tumors and their sequential PDXs and scored retention 
of the genetic alterations present in the original tumors after xenografting. The orig-
inal tumors showed chromosome profile instability between fragments of the same 
tumor in an allelic imbalance (AI) assay. After the xenografting, all the AIs were 
maintained in PDX models compared to the original tumors, and the maintenance 
of the genetic profiles of the tumors could be observed even after serial transplanta-
tion for up to 14 passages. These results proved that intra-tumor clonal heterogene-
ity was conserved in the PDX models of the seven colonic tumors [4].

In Landen et  al.’s research, it was demonstrated that PDX models of ovarian 
cancer can also recapitulate the original tumor’s heterogeneity. They examined 
oncogenic expression, proliferation, and response to chemotherapy and found that 
xenografts recapitulated the heterogeneity of tumor-initiating cells in the original 
patient tumor, although the stromal component was murine. The PDX models had 
similar oncogene expressions as the original tumor and responded to chemotherapy 
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in a similar manner as the patients from which the original tumors had been har-
vested [5].

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous B-cell cancer 
defined by signaling and survival pathways, multiple genetic alterations, and tran-
scriptional classifications. Rodig et  al. generated nine large B-cell lymphoma 
(LBCL) PDX models, including eight DLBCL and one plasmablastic lymphoma. 
They used whole-exome sequencing to identify mutations and chromosomal altera-
tions and whole-transcriptome sequencing to classify cells of origin and consensus 
clustering classification (CCC) subtypes. Six of the eight DLBCL models were acti-
vated B-cell (ABC)-type tumors and exhibited ABC-associated mutations such as 
CARD11, CD79B, MYD88, and PIM1. The other two DLBCL models were germi-
nal B-cell type and showed alterations of CREBBP, EZH2, and GNA13 and chro-
mosomal translocations involving IgH and either BCL2 or MYC. Six of the eight 
DLBCL PDX models were B-cell receptor (BCR)-type tumors identified by CCC 
criteria, and they exhibited BCR selective surface immunoglobulin expression. The 
reflection of the transcriptional, genetic, and immune-phenotypic heterogeneity of 
primary DLBCL in PDX models indicates that PDX models for DLBCL are effec-
tive and faithful as reported for solid tumors [6].

PDX models have been developed for a few malignancies, including colonic [4, 
7], ovarian [5], pancreatic [8], and breast cancers [9, 10], non-small cell lung can-
cers [11], as well as large B-cell lymphoma [6] and medulloblastoma [12]. Although 
these PDX models were shown to closely recapitulate the histology and gene 
expression patterns of the primary tumors, some genomic, transcriptomic, or pro-
teomic differences were also observed between the PDXs and the patients’ tumors.

In Fang et al.’s study, a collection of PDX models for hepatocellular carcinoma 
(HCC) was established. These models recapitulated the complexity of the original 
tumors, including gene expression profiles, mutational status, and DNA copy num-
ber alterations (CNA), with few differences found. For example, of the gene expres-
sion profiles, genes related to DNA replication and cell cycling were upregulated in 
the PDXs. They compared 286 HCC patient samples with 42 HCC PDX models and 
found copy number gains in the following genes: PBX1 (76.2%), PRCC (76.2%), 
ARNT (61.9%), BCL9 (59.5%), MTDH (52.4%), COX6C (52.4%), ABL2 (50%), 
MET (42.9%), CCND1 (16.7%), FGF19 (14.3%), and losses of AFF1 (76%), 
RAP1GDS1 (71%), WRN (71.4%), PCM1 (71.4%), WHSC1L1 (66.7%), RB1 
(59.5%), BRCA2 (57.1%), CDKN2A (57.1%), CDH1 (50%), CDKN2B (45.2%), 
TSC2 (38.1%), SMAD4 (33.3%), APC (28.6%), STK11 (26.2%), WT1 (23.8%), 
MLH1 (21.4%), TNFAIP3 (21.4%), PTEN (19.1%), CDKN2C (16.7%), ARID1A 
(14.3%), and TNFRSF14 (11.9%). The results suggest that oncogenes were enriched 
during the xenografting [13].

Mardis et al. established a panel of PDX models for human basal-like breast can-
cer and analyzed four DNA samples for one patient to get genomic information on 
peripheral blood, primary tumor, brain metastasis, and the xenograft derived from the 
primary tumor. Compared with the primary tumor, the metastasis exhibited enrich-
ment for 20 shared mutations, a large deletion not present in the primary tumor and 
two de novo mutations. The PDX models retained all primary tumor mutations as 
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expected, while the mutation enrichment pattern of the PDX highly resembled that 
of the metastasis. They identified 50 novel somatic point mutations and small indels 
(insertion/deletion). The wide range of mutant allele frequencies displayed genetic 
heterogeneity in the cell population of the primary tumor. The mutation frequency 
range narrowed in the brain metastasis and PDX, which may indicate that the meta-
static and xenografting processes selected for cells carrying a distinct subset of the 
primary tumor mutation repertoire. The overlap between the mutation frequency 
both changed in the metastatic and xenograft samples suggested that cellular selec-
tion during xenografting was similar to that during metastasis [14].

Differences between original tumors and PDX models have also been observed in 
head and neck squamous cell carcinomas (HNSCC). Grandis JR et al. compared the 
protein expressions of PDXs with those of HNSCCs and found that, whereas the 
majority of proteins were similarly expressed, 64 proteins were differentially 
expressed in the PDXs: 30 proteins showing increased expression, whereas 34 
showed reduced expression. There were only six proteins, i.e., AKT, c-Myc, PR, 
BCL2, c-Kit, and HSP70, with more than half of the PDX models outside the expres-
sion range of primary HNSCCs. AKT, c-Myc, and PR showed increased expression 
in PDXs, whereas the expressions of BCL2, c-Kit, and HSP70 were decreased. This 
protein expression panel indicates that proteins associated with cell proliferation 
may be preferentially selected during the development of the xenografts [15].

Differences between original tumors and PDX models have been reported for 
several types of cancer, such as breast [14, 16, 17], colonic [18], and liver cancer 
[13] and head and neck squamous cell carcinoma [15]. The differences may be 
explained by the following theories: (1) In response to stress-inducing events, spe-
cific cells which had preference expression patterns could survive more easily than 
others, (2) the xenografts evolve dynamically in order to adapt to growth in different 
hosts [17], (3) the replacement of the human stroma with mouse stromal cells after 
engraftment, and (4) loss of non-transformed epithelial cells.

�PDX Models Retain Cell-Autonomous Heterogeneity

Human tumor heterogeneity creates a complex microenvironment that enables cell 
growth, development of therapy resistance, and metastasis [19, 20]. Cell lines cul-
tured from cancer samples which were collected decades ago are still used in labo-
ratories, yet pronounced differences in molecular profiles have been found between 
commonly used ovarian cancer cell lines and high-grade serous ovarian cancer 
samples [21]. In vitro cell cultures lack the stroma and mesenchymal elements pres-
ent in human tumors to generate the paracrine production of growth factors and 
signaling pathways necessary to support tumor proliferation and metastasis forma-
tion [22–24]. Continuous subculturing of cells and passaging with enzyme treat-
ment used for in  vitro cell maintenance may be selecting a genetically and 
phenotypically uniform cancer cell subclone that flourishes in the plastic dish of the 
laboratory setting which, however, lacks the heterogeneous microenvironment seen 
in human tumors [25].
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Because in vitro cell cultures lack heterogeneity, researchers have investigated 
alternative models that more closely resemble human tumors. Xenograft models, 
generated by engrafting established cell lines in mice, are widely used by research-
ers, but the functional utility [26] and the accuracy of such conventional xenografts 
lacking the donor tumor heterogeneity and tumor microenvironment [27] have been 
questioned. For decades, preclinical research in malignancies has largely relied 
upon cloned cancer-derived cell lines and tumor xenografts derived from these cell 
lines. However, the cell lines used for translational research have disadvantages, as 
genetic and phenotypic alterations from serial passaging have resulted in expression 
profiles that are different from those of the original patient tumors. Preclinical mod-
els, such as cell line-based xenograft models, often fail to retain the diverse hetero-
geneity of human tumors and hence lack clinical predictive power.

Intra-tumoral heterogeneity plays an important role in driving the extent of drug 
response and the development of therapy resistance. The existence of multiple sub-
clones in human tumors explains variable response rates to therapy, even within a 
single tumor mass, and the rapid emergence of drug resistance. For example, the 
presence of a minor KRAS-mutant clone can predict which colorectal cancer 
patients will develop resistance to epidermal growth factor receptor (EGFR)-
targeted therapy [28]. Curtis et al. showed that breast cancer had at least ten distinct 
molecular subtypes with significant differences in disease outcome and responses to 
therapy [29]. There is an association between clonal diversity and drug resistance 
for at least some tumor types—notably ovarian [30] and esophageal [31]. Basal-like 
triple negative breast cancers (TNBCs) have previously been linked to shorter 
disease-free survival when compared to non-basal-like triple negative breast can-
cers and tend to be associated with higher clonal diversity [32]. Clearly, although 
more work has to be done, it seems likely that the clonal composition of tumors will 
have potential use for predicting disease outcome and informing treatment choice.

The above implications suggest that we need to advance toward using highly 
characterized tumor models, representative of the large variability of tumors in 
humans. Next-generation sequencing and single-cell sequencing studies have iden-
tified multiple genetically distinct clonal variants within a single human tumor, 
demonstrating the level of heterogeneity that exists in human tumors [33, 34]. 
Therefore, the models we choose to study the development of therapeutic drug 
resistance need to reflect (1) genetic variation and (2) the tumor microenvironment. 
Both factors will affect the sensitivity or response and eventual resistance of a tumor 
to therapy. There are several heterogeneity factors in a developing tumor, such as the 
presence of distinct clonal variants in the original tumor population, tumor-initiat-
ing subpopulations, and cells carrying “mutator” phenotypes that allow a tumor to 
develop therapy resistance. The better we model all these aspects of intra-tumoral 
heterogeneity, the more likely we are to capture the dynamic nature of resistance. In 
order to create better models of human cancers, PDX models have been developed. 
The PDX models, derived from patient tumor tissues as distinct from cultured cell 
lines, have, by virtue of recapitulating as much of the human variation as possible, 
emerged as a powerful technology showing better representation of the heterogene-
ity of tumors, and part of the human tumor microenvironment, with preservation of 
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cellular complexity, genetics, vascular, and stromal tumor architecture. PDX cancer 
models are likely best suited for (1) studying the emergence of multiple resistance 
mechanisms, (2) guiding therapeutic strategies to overcome relapsed tumors, and 
(3) using drug efficacy tests in the discovery and preclinical development of supe-
rior anticancer agents.

To examine whether PDXs are able to show varying responses of patients’ 
tumors to chemotherapy, the Shanghai LIDE Biotech Company designed a reverse 
validation trial with S-1, a drug combination used for therapy of gastric cancers. The 
trial was performed on four gastric cancer samples (GAPF155, GAPF157, 
GAPF161, and GAPF187) that had successfully been engrafted into mice. 
Xenografts were propagated and treatment cohorts of 16 mice were generated for 
each implanted cancer specimen. When tumors reached an average volume of 
200 mm3, mice were randomized to receive either a placebo or S-1. Consistent with 
the treatment response of patients to S-1, as shown in Fig.  5.1, GAPF155 and 
GAPF157 were sensitive to S-1, whereas GAPF161 and GAPF187 were not sensi-
tive to S-1. These results indicate that PDXs can reflect variable responses of 
patients’ tumors to therapy.

a b

c d

Fig. 5.1  Efficacy study of S-1 in four gastric PDX models. a and b show that GAPF155 and 
GAPF157 were sensitive to S-1; c and d show that GAPF161 and GAPF187 were not sensitive 
to S-1
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�PDX Models May Fail to Fully Account for Many Non-cell-
Autonomous Drivers of Heterogeneity

PDXs are arguably the best models of tumor heterogeneity and therefore perhaps 
the most powerful tools for investigating tumor biology. Although PDX models 
maintain the genomic architecture, histology, and drug responsiveness of the orig-
inal patients’ tumors, the clonal profiles and tumor microenvironment of PDX 
tumors can change during their propagation in immunodeficient mice. Analysis of 
genome-wide variant allele frequencies in serial passages of PDX tumors showed 
that clonal selection occurs more frequently in initial engraftment steps than in 
propagation steps, but the detailed clonal dynamics differ depending on the vari-
ous tumor samples of the same tumor type [35]. The clonal dynamics in PDX 
tumors is probably generated by selection acting on preexisting clones rather than 
by generation of new clones [36]. As a result, it is probable that the more aggres-
sive clones become dominant in PDX tumors, and, in some cases, PDX models 
indeed showed the genomic and transcriptomic signature of metastatic and 
relapsed cancers [37]. These aggressive clones could be particularly important 
targets in cancer therapy.

As well, stromal and immune interactions in PDXs may be altered by cellular 
component deficiencies and interspecies compatibility in host models. However, 
the tumor microenvironment has long been known to play an essential role in 
tumor progression, and its role in drug response is becoming apparent [38, 39]. 
Aside from clonal dynamics driven by intrinsic differences in a cell’s genetic or 
epigenetic background, intra-tumor heterogeneity can be influenced by tumor-
extrinsic factors in the non-cell-autonomous compartment [40]. Cellular interac-
tions with the extracellular matrix (ECM) can alter gene expression programs, 
drive differentiation, and profoundly alter cell behavior. As cancers develop, tight 
regulation of the ECM is lost and tissue architecture begins to degrade [38]. A 
study by Wang and colleagues [41] provides direct evidence that ECM-dependent 
signaling confers dynamic switching between transforming growth factor b recep-
tor 3 (TGFBR3) and jun D proto-oncogene (JUND)-related expression signatures. 
ECM-driven oscillations between signaling pathways such as those described 
could have profound effects on propensity to malignancy. Furthermore, solid-state 
ECM interactions are necessary for cells to maintain stem cell properties, and 
regulated ECM helps maintain the stem cell niche [42]. In PDX models, Matrigel 
is often used to increase the engraftment efficiency; however, it is worth noting 
that this is a murine basement membrane extract, and suitable synthetic human 
alternatives are available. The presence of growth factors in Matrigel may favor 
the engraftment of one cell type over another. Finally, as ECM structure is tissue 
specific [42], researchers should consider the use of orthotopic transplantations 
where possible.

The tumor microenvironment is further characterized by an influx of stromal 
cells. Infiltrating cancer-associated fibroblasts (CAF) can often confer resistance to 
cytotoxic and targeted therapies [39]. Because of the high levels of CAF infiltrates 
seen in some tumor types, heterogeneity within their population would undoubtedly 
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confer differential properties to the tumor bulk. In PDX models, human stromal 
cells are gradually replaced by murine equivalents upon engraftment in the mouse, 
suggesting that implanted human cancer cells retain the ability to recruit murine 
accessory cells to their niche. However, it should be noted that some differences 
exist between ligand repertoires of human and murine fibroblasts. Clearly, stromal 
architecture and activity are mimicked in the murine host; however, it is currently 
unclear how this reflects human stroma with regard to supporting tumor growth and 
development.

The immune system also plays a crucial role in tumor progression, and perhaps 
it is the most obvious disadvantage in PDX models, because of engraftment into 
severely immune-deficient host animals. Tumor cells are broadly thought to be anti-
genic which emerge point mutations in coding exons in a developed tumor and 
result in a large repertoire of neoantigens. Targeting of these neoantigens can lead 
to significant CD8+cytotoxic T-cell infiltration and tumor cell death. However, most 
tumors eventually progress and evade the immune system often through the domi-
nant inhibitory effects of suppressive pathways (the so-called immune checkpoints 
such as CTLA-4/B7 and PD-1/PD-L1). This is supported by the prognostic value of 
the CD8+ to FOXP3+ (cytotoxic to regulatory T-cell, Treg) ratio in many solid tumors 
and the recently reported clinical efficacy of a variety of checkpoint inhibitors [43, 
44]. The proinflammatory microenvironment established by M1-polarized tumor-
associated macrophages (TAM), CD8+T-cells, NK cells, and others can lead to the 
recruitment of numerous immune-suppressive components. In addition, CD4+T-cell 
and macrophage recruitment following intensive chemotherapy in breast cancer 
patients is associated with significantly reduced recurrence-free survival [44].

All in all, heterogeneity within a tumor is governed by both cell-autonomous 
(e.g., genetic and epigenetic heterogeneity) and non-cell-autonomous (e.g., stromal 
heterogeneity) drivers. Although PDXs can largely recapitulate the genomic archi-
tecture, histology, and drug responsiveness of human tumors, they may not fully 
account for heterogeneity in the tumor microenvironment. However, these models 
have substantial utility in basic and translational research in cancer biology, but study 
of stromal or immune drivers of tumor progression may be limited. Similarly, PDX 
models offer the ability to conduct in vivo and ex vivo patient-specific drug screens, 
but stromal contributions to treatment responses may be underrepresented.
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