Skip to main content

Fidelity and Stability of PDX Models

  • Chapter
  • First Online:
Patient-Derived Xenograft Models of Human Cancer

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

In cancer drug discovery and translational research, efficacy tests using clinically relevant tumor models are a critical step to advance a drug candidate from the laboratory to the clinic. In recent years, patient-derived xenograft (PDX) cancer tissue models have become increasingly important and widely used, due to their significantly improved availability and, more importantly, better recapitulation of the human tumor compared to conventional, cell line-derived models. It is hoped that the broader adoption of PDX models will improve the predictive value of preclinical studies, which will in turn reduce clinical attritions in drug development. In addition, PDX tumors hold the promise of enabling discovery of novel targets and biomarkers, better predicting drug sensitivity or resistance, and guiding treatment selection in the clinic. This chapter will discuss the current understandings of the fidelity and stability of PDX models and how these features affect the selection and utility of PDX models in basic and translational cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

CGH:

Comparative genomic hybridization

ER:

Estrogen receptor

IFP:

Interstitial fluid pressure

mCRC:

Metastatic colorectal cancer

NGS:

Next generation sequencing

PDAC:

Pancreatic ductal adenocarcinoma

PDX:

Patient-derived xenograft

SCID:

Severe combined immunodeficiency

References

  1. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69(8):3364–73. doi:10.1158/0008-5472.CAN-08-4210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31. doi:10.1054/bjoc.2001.1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smiraglia DJ, Rush LJ, Fruhwald MC, Dai Z, Held WA, Costello JF, et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet. 2001;10(13):1413–9.

    Article  CAS  PubMed  Google Scholar 

  4. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26(30):4442–52. doi:10.1038/sj.onc.1210228.

    Article  CAS  PubMed  Google Scholar 

  5. Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 2006;66(7):3351–3354. discussion 4. doi:10.1158/0008-5472.CAN-05-3627.

  6. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73(17):5315–9. doi:10.1158/0008-5472.CAN-13-1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malaney P, Nicosia SV, Dave V. One mouse, one patient paradigm: new avatars of personalized cancer therapy. Cancer Lett. 2014;344(1):1–12. doi:10.1016/j.canlet.2013.10.010.

    Article  CAS  PubMed  Google Scholar 

  8. Broudy T, Ricono J, Scott C, Nair P, Thatte J, Mirsaidi C. Molecular Response LLC tumor bank and patient-derived tumor xenograft models: a powerful translational engine for discovery and development of novel oncology therapeutics. Proceedings: AACR 106th Annual Meeting 2015. 2015;Abstract 3224.

    Google Scholar 

  9. Vick B, Rothenberg M, Sandhofer N, Carlet M, Finkenzeller C, Krupka C, et al. An advanced preclinical mouse model for acute myeloid leukemia using patients’ cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS One. 2015;10(3):e0120925. doi:10.1371/journal.pone.0120925.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang K, Sanchez-Martin M, Wang X, Knapp KM, Koche R, Vu L, et al. Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia. 2016; doi:10.1038/leu.2016.166.

    Google Scholar 

  11. Cesano A, Hoxie JA, Lange B, Nowell PC, Bishop J, Santoli D. The severe combined immunodeficient (SCID) mouse as a model for human myeloid leukemias. Oncogene. 1992;7(5):827–36.

    CAS  PubMed  Google Scholar 

  12. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. doi:10.1038/367645a0.

    Article  CAS  PubMed  Google Scholar 

  13. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–21. doi:10.1038/nbt1350.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez PV, Perry RL, Sarry JE, Perl AE, Murphy K, Swider CR, et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia. 2009;23(11):2109–17. doi:10.1038/leu.2009.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50. doi:10.1038/nrclinonc.2012.61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garber K. From human to mouse and back: ‘tumorgraft’ models surge in popularity. J Natl Cancer Inst. 2009;101(1):6–8. doi:10.1093/jnci/djn481.

    Article  PubMed  Google Scholar 

  17. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20. doi:10.1038/nm.2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu S, Zhao J, Bai H, Duan J, Wang Z, An T, et al. High-fidelity of non-small cell lung cancer xenograft models derived from bronchoscopy-guided biopsies. Thoracic Cancer. 2016;7(1):100–10. doi:10.1111/1759-7714.12291.

    Article  CAS  PubMed  Google Scholar 

  19. Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29(3):193–203.

    Article  CAS  PubMed  Google Scholar 

  20. Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012;14(1):R11. doi:10.1186/bcr3095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Visonneau S, Cesano A, Torosian MH, Miller EJ, Santoli D. Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am J Pathol. 1998;152(5):1299–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee CH, Xue H, Sutcliffe M, Gout PW, Huntsman DG, Miller DM, et al. Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecol Oncol. 2005;96(1):48–55. doi:10.1016/j.ygyno.2004.09.025.

    Article  PubMed  Google Scholar 

  23. Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther. 2009;85(2):217–21. doi:10.1038/clpt.2008.200.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97. doi:10.1158/0008-5472.CAN-12-4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scully OJ, Bay BH, Yip G, Yu Y. Breast cancer metastasis. Cancer Genomics Proteomics. 2012;9(5):311–20.

    CAS  PubMed  Google Scholar 

  26. Walters DM, Stokes JB, Adair SJ, Stelow EB, Borgman CA, Lowrey BT, et al. Clinical, molecular and genetic validation of a murine orthotopic xenograft model of pancreatic adenocarcinoma using fresh human specimens. PLoS One. 2013;8(10):e77065. doi:10.1371/journal.pone.0077065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bergamaschi A, Hjortland GO, Triulzi T, Sorlie T, Johnsen H, Ree AH, et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol. 2009;3(5–6):469–82. doi:10.1016/j.molonc.2009.07.003.

    Article  CAS  PubMed  Google Scholar 

  28. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature. 2010;464(7291):999–1005. doi:10.1038/nature08989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petrillo LA, Wolf DM, Kapoun AM, Wang NJ, Barczak A, Xiao Y, et al. Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Res Treat. 2012;135(3):913–22. doi:10.1007/s10549-012-2226-y.

    Article  CAS  PubMed  Google Scholar 

  30. Povlsen CO, Visfeldt J, Rygaard J, Jensen G. Growth patterns and chromosome constitutions of human malignant tumours after long-term serial transplantation in nude mice. Acta pathologica et microbiologica Scandinavica Section A, Pathology. 1975;83(6):709–16.

    CAS  PubMed  Google Scholar 

  31. Zhao X, Liu Z, Yu L, Zhang Y, Baxter P, Voicu H, et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro Oncol. 2012;14(5):574–83. doi:10.1093/neuonc/nos061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Ye C, Mansmann UR. Comparing patient-derived xenograft and computational response prediction for targeted therapy in patients of early-stage large cell lung cancer. Clin Cancer Res. 2016;22(9):2167–76. doi:10.1158/1078-0432.CCR-15-2401.

    Article  CAS  PubMed  Google Scholar 

  33. Moro M, Bertolini G, Tortoreto M, Pastorino U, Sozzi G, Roz L. Patient-derived xenografts of non small cell lung cancer: resurgence of an old model for investigation of modern concepts of tailored therapy and cancer stem cells. J Biomed Biotechnol. 2012;2012:568567. doi:10.1155/2012/568567.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Choi YY, Lee JE, Kim H, Sim MH, Kim KK, Lee G, et al. Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Sci Rep. 2016;6:22172. doi:10.1038/srep22172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28. doi:10.1158/1078-0432.CCR-12-0372.

    Article  CAS  PubMed  Google Scholar 

  36. McEvoy J, Ulyanov A, Brennan R, Wu G, Pounds S, Zhang J, et al. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS One. 2012;7(8):e42739. doi:10.1371/journal.pone.0042739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rea D, Del Vecchio V, Palma G, Barbieri A, Falco M, Luciano A, et al. Mouse models in prostate cancer translational research: from xenograft to PDX. Biomed Res Int. 2016;2016:9750795. doi:10.1155/2016/9750795.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pan CX, Zhang H, Tepper CG, Lin TY, Davis RR, Keck J, et al. Development and characterization of bladder cancer patient-derived xenografts for molecularly guided targeted therapy. PLoS One. 2015;10(8):e0134346. doi:10.1371/journal.pone.0134346.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu JF, Palakurthi S, Zeng Q, Zhou S, Ivanova E, Huang W, et al. Establishment of patient-derived tumor xenograft models of epithelial ovarian cancer for pre-clinical evaluation of novel therapeutics. Clin Cancer Res. 2016; doi:10.1158/1078-0432.CCR-16-1237.

    Google Scholar 

  40. Peng S, Creighton CJ, Zhang Y, Sen B, Mazumdar T, Myers JN, et al. Tumor grafts derived from patients with head and neck squamous carcinoma authentically maintain the molecular and histologic characteristics of human cancers. J Transl Med. 2013;11:198. doi:10.1186/1479-5876-11-198.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518(7539):422–6. doi:10.1038/nature13952.

    Article  CAS  PubMed  Google Scholar 

  42. Lunt SJ, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease. Clin Exp Metastasis. 2009;26(1):19–34. doi:10.1007/s10585-008-9182-2.

    Article  PubMed  Google Scholar 

  43. Chaudary N, Pintilie M, Schwock J, Dhani N, Clarke B, Milosevic M, et al. Characterization of the tumor-microenvironment in patient-derived cervix xenografts (OCICx). Cancer. 2012;4(3):821–45. doi:10.3390/cancers4030821.

    Article  Google Scholar 

  44. de Plater L, Lauge A, Guyader C, Poupon MF, Assayag F, de Cremoux P, et al. Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br J Cancer. 2010;103(8):1192–200. doi:10.1038/sj.bjc.6605900.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Braekeveldt N, Wigerup C, Tadeo I, Beckman S, Sanden C, Jonsson J, et al. Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours. Cancer Lett. 2016;375(2):384–9. doi:10.1016/j.canlet.2016.02.046.

    Article  CAS  PubMed  Google Scholar 

  46. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, et al. An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res. 2006;12(15):4652–61. doi:10.1158/1078-0432.CCR-06-0113.

    Article  CAS  PubMed  Google Scholar 

  47. Simpson-Abelson MR, Sonnenberg GF, Takita H, Yokota SJ, Conway Jr TF, Kelleher Jr RJ, et al. Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rgamma(null) mice. J Immunol. 2008;180(10):7009–18.

    Article  CAS  PubMed  Google Scholar 

  48. Sobel RE, Sadar MD. Cell lines used in prostate cancer research: a compendium of old and new lines—part 1. J Urol. 2005;173(2):342–59. doi:10.1097/01.ju.0000141580.30910.57.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dolgova EV, Alyamkina EA, Efremov YR, Nikolin VP, Popova NA, Tyrinova TV, et al. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol Ther. 2014;15(10):1378–94. doi:10.4161/cbt.29854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Diaz Jr LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40. doi:10.1038/nature11219.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9. doi:10.1038/nature10933.

    CAS  PubMed  Google Scholar 

  53. Mattern J, Bak M, Hahn EW, Volm M. Human tumor xenografts as model for drug testing. Cancer Metastasis Rev. 1988;7(3):263–84.

    Article  CAS  PubMed  Google Scholar 

  54. Vestergaard BF, Bjerrum OJ, Norrild B, Grauballe PC. Crossed immunoelectrophoretic studies of the solubility immunogenicity of herpes simplex virus antigens. J Virol. 1977;24(1):82–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Beckhove P, Schutz F, Diel IJ, Solomayer EF, Bastert G, Foerster J, et al. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer. 2003;105(4):444–53. doi:10.1002/ijc.11125.

    Article  CAS  PubMed  Google Scholar 

  56. Cottu P, Marangoni E, Assayag F, de Cremoux P, Vincent-Salomon A, Guyader C, et al. Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat. 2012;133(2):595–606. doi:10.1007/s10549-011-1815-5.

    Article  CAS  PubMed  Google Scholar 

  57. Dangles-Marie V, Pocard M, Richon S, Weiswald LB, Assayag F, Saulnier P, et al. Establishment of human colon cancer cell lines from fresh tumors versus xenografts: comparison of success rate and cell line features. Cancer Res. 2007;67(1):398–407. doi:10.1158/0008-5472.CAN-06-0594.

    Article  CAS  PubMed  Google Scholar 

  58. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clini Cancer Res. 2007;13(13):3989–98. doi:10.1158/1078-0432.CCR-07-0078.

    Article  CAS  Google Scholar 

  59. Van Weerden WM, de Ridder CM, Verdaasdonk CL, Romijn JC, van der Kwast TH, Schroder FH, et al. Development of seven new human prostate tumor xenograft models and their histopathological characterization. Am J Pathol. 1996;149(3):1055–62.

    PubMed  PubMed Central  Google Scholar 

  60. Wang Y, Sudilovsky D, Zhang B, Haughney PC, Rosen MA, Wu DS, et al. A human prostatic epithelial model of hormonal carcinogenesis. Cancer Res. 2001;61(16):6064–72.

    CAS  PubMed  Google Scholar 

  61. Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N, et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 2007;67(1):32–40. doi:10.1158/0008-5472.CAN-06-0610.

    Article  CAS  PubMed  Google Scholar 

  62. Spilker ME, Chen X, Visswanathan R, Vage C, Yamazaki S, Li GG, et al. Found in translation: maximizing the clinical relevance of nonclinical oncology studies. Clin Cancer Res. 2016; doi:10.1158/1078-0432.CCR-16-1164.

    PubMed  Google Scholar 

  63. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23. doi:10.1158/2159-8290.CD-11-0109.

    Article  CAS  PubMed  Google Scholar 

  64. Kabos P, Finlay-Schultz J, Li C, Kline E, Finlayson C, Wisell J, et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res Treat. 2012;135(2):415–32. doi:10.1007/s10549-012-2164-8.

    Article  CAS  PubMed  Google Scholar 

  65. Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J, Ngan L, et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One. 2008;3(6):e2428. doi:10.1371/journal.pone.0002428.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14(20):6456–68. doi:10.1158/1078-0432.CCR-08-0138.

    Article  CAS  PubMed  Google Scholar 

  67. Fichtner I, Slisow W, Gill J, Becker M, Elbe B, Hillebrand T, et al. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer. 2004;40(2):298–307.

    Article  CAS  PubMed  Google Scholar 

  68. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther. 2011;10(8):1311–6. doi:10.1158/1535-7163.MCT-11-0233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Krumbach R, Schuler J, Hofmann M, Giesemann T, Fiebig HH, Beckers T. Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer. 2011;47(8):1231–43. doi:10.1016/j.ejca.2010.12.019.

    Article  CAS  PubMed  Google Scholar 

  70. Dong X, Guan J, English JC, Flint J, Yee J, Evans K, et al. Patient-derived first generation xenografts of non-small cell lung cancers: promising tools for predicting drug responses for personalized chemotherapy. Clin Cancer Res. 2010;16(5):1442–51. doi:10.1158/1078-0432.CCR-09-2878.

    Article  CAS  PubMed  Google Scholar 

  71. Lim SM, Jeong Y, Hong S. Strategies to overcome acquired resistances conferred by mutations in the kinase domain of EGFR. Future Med Chem. 2016;8(8):853–78. doi:10.4155/fmc-2016-0019.

    Article  CAS  PubMed  Google Scholar 

  72. Ahsan A. Mechanisms of resistance to EGFR tyrosine kinase inhibitors and therapeutic approaches: an update. Adv Exp Med Biol. 2016;893:137–53. doi:10.1007/978-3-319-24223-1_7.

    Article  PubMed  Google Scholar 

  73. Lee JC, Jang SH, Lee KY, Kim YC. Treatment of non-small cell lung carcinoma after failure of epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Res Treat. 2013;45(2):79–85. doi:10.4143/crt.2013.45.2.79.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44(8):852–60. doi:10.1038/ng.2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal transition in drug resistance and metastasis of lung cancer. Cancer Res Treat. 2012;44(3):151–6. doi:10.4143/crt.2012.44.3.151.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. doi:10.1126/scitranslmed.3002003.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hammerman PS, Janne PA, Johnson BE. Resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2009;15(24):7502–9. doi:10.1158/1078-0432.CCR-09-0189.

    Article  CAS  PubMed  Google Scholar 

  78. Kim MP, Truty MJ, Choi W, Kang Y, Chopin-Lally X, Gallick GE, et al. Molecular profiling of direct xenograft tumors established from human pancreatic adenocarcinoma after neoadjuvant therapy. Ann Surg Oncol. 2012;19 Suppl 3:S395–403. doi:10.1245/s10434-011-1839-4.

  79. Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, Karnezis AN, et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia. 2013;15(3):249–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fleming JM, Miller TC, Meyer MJ, Ginsburg E, Vonderhaar BK. Local regulation of human breast xenograft models. J Cell Physiol. 2010;224(3):795–806. doi:10.1002/jcp.22190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Garcia S, Freitas AA. Humanized mice: current states and perspectives. Immunol Lett. 2012;146(1–2):1–7. doi:10.1016/j.imlet.2012.03.009.

    Article  CAS  PubMed  Google Scholar 

  82. Lux A, Nimmerjahn F. Of mice and men: the need for humanized mouse models to study human IgG activity in vivo. J Clin Immunol. 2013;33 Suppl 1:S4–8. doi:10.1007/s10875-012-9782-0.

  83. Li G. Patient-derived xenograft models for oncology drug discovery. J Cancer Metastasis Treat. 2015;1:8–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Li, G. (2017). Fidelity and Stability of PDX Models. In: Wang, Y., Lin, D., Gout, P. (eds) Patient-Derived Xenograft Models of Human Cancer . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55825-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55825-7_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-55824-0

  • Online ISBN: 978-3-319-55825-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics