Skip to main content

Runoff Curve Number for 36 Small Agricultural Plots at Two Different Climatic Conditions in India

  • Conference paper
  • First Online:
Development of Water Resources in India

Part of the book series: Water Science and Technology Library ((WSTL,volume 75))

  • 712 Accesses

Abstract

The performance of eight different curve number (CN) estimation methods, viz. storm event mean and median, rank-order mean and median, log-normal frequency, S-probability (SP), geometric mean and least square fit, was evaluated using rainfall–runoff data measured on 36 small agricultural plots located at two different climatic conditions in India. The least square fit method was observed to estimate significantly lower CN than other methods except log-normal frequency method. Based on the overall score, the method performance in runoff estimation was as follows: S-probability > geometric mean > storm event mean > rank-order median > rank-order mean > least square fit > storm event median > log-normal frequency. The runoff (or CN) production in the study plots was mainly dependent on soil type as compared to land uses and slope. An inverse relationship between CN and infiltration capacity was found to observe which support the applicability of National Engineering Handbook (Chap. 4) tables where CNs decline with soil type (or infiltration capacity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SCS: ‘Hydrology’ National Engineering Handbook, Supplement A, Section 4, Soil Conservation Service, USDA, Washington, DC (1972)

    Google Scholar 

  2. Rallison, R.E.: Origin and evaluation of the SCS runoff equation. In: Proceedings of Irrigation and Drainage Symposia on Watershed Management, vol. 2, pp. 912–924. ASCE, New York (1980)

    Google Scholar 

  3. Arnold, J.G., Williams, J.R., Srinivasan, R., King, K.W.: SWAT: soil and water assessment tool. USDA-ARS, Grassland, Soil and Water Research Laboratory, Temple, TX (1996)

    Google Scholar 

  4. Young, R.A., Onstad, C.A., Bosch, D.D., Anderson, W.P.: AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 44(2), 168–173 (1989)

    Google Scholar 

  5. Knisel, W.G.: CREAMS: a field-scale model for chemical, runoff and erosion from agricultural management systems. Conservation Research Report No. 26, South East Area, US Department of Agriculture, Washington, DC (1980)

    Google Scholar 

  6. Sharpley, A.N., Williams, J.R.: EPIC-Erosion/productivity impact calculator: 1. Model determination. US Department of Agriculture. Tech. Bull., No. 1768 (1990)

    Google Scholar 

  7. Gao, G.Y., Fu, B.J., Lu, Y.H., Liu, Y., Wang, S., Zhou, J.: Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China. Hydrol. Earth Syst. Sci. 16, 2347–2364 (2012)

    Article  Google Scholar 

  8. Mishra, S.K., Tyagi, J.V., Singh, V.P., Singh, R.: SCS-CN based modelling of sediment yield. J. Hydrol. 324, 301–322 (2006)

    Article  Google Scholar 

  9. Tyagi, J.V., Mishra, S.K., Singh, R., Singh, V.P.: SCS-CN based time-distributed sediment yield model. J. Hydrol. 352, 388–403 (2008)

    Article  Google Scholar 

  10. Ebrahimian, M., Nuruddin, A.A.B., Soom, M.A.B.M., Sood, A.M., Neng, L.J.: Runoff estimation in steep slope watershed with standard and slope-adjusted curve number methods. Pol. J. Environ. Stud. 21(5), 1191–1202 (2012)

    Google Scholar 

  11. Ajmal, M., Moon, G., Ahn, J.: Kim T Quantifying excess storm water using SCS-CN–based rainfall runoff models and different curve number determination methods. J. Irrig. Drain. Eng. 141(3), 04014058 (2015)

    Article  Google Scholar 

  12. McCuen, R.H.: Approach to confidence interval estimation for curve numbers. J. Hydrol. Eng. 7:1(43), 43–48 (2002). doi:10.1061/(ASCE)1084-0699(2002

  13. Schneider, L.E., McCuen, R.H.: Statistical guidelines for curve number generation. J. Irrig. Drain. Eng. 131(3), 282–290 (2005)

    Article  Google Scholar 

  14. Hawkins, R.H.: The importance of accurate curve numbers in the estimation of storm runoff. Water Resour. Bull. 11(5), 887–891 (1975)

    Google Scholar 

  15. Hawkins, R.H., Ward, T.J., Woodward, D.E., Van Mullen, J.A. (eds.): Curve Number Hydrology: State of the Practice. ASCE, Reston, VA (2009)

    Google Scholar 

  16. Tedela, N.H., McCutcheon, S.C., Rasmussen, T.C., Hawkins, R.H., Swank, W.T., Campbell, J.L., Adams, M.B., Jackson, C.R., Tollner, E.W.: Runoff curve number for 10 small forested watersheds in the mountains of the Eastern United States. J. Hydrol. Eng. 17, 1188–1198 (2012)

    Article  Google Scholar 

  17. Hawkins, R.H., Jiang, R., Woodward, D.E., Hjelmfelt, A.T., Van Mullem, J.A., Quan, Q.D.: Runoff curve number method: examination of the initial abstraction ratio. In: Proceedings of the Second Federal Interagency Hydrologic Modeling Conference. ASCE Publications, Las Vegas (2002)

    Google Scholar 

  18. Hawkins, R.H.: Asymptotic determination of runoff curve numbers from data. J. Irrig. Drain. Eng. 119(2), 334–345 (1993)

    Article  Google Scholar 

  19. Hjelmfelt Jr., A.T.: Investigation of curve number procedure. J. Hydraul. Eng. 117, 725–737 (1991)

    Article  Google Scholar 

  20. Ali, S., Sharda, V.N.: A comparison of curve number based methods for runoff estimation for small watersheds in semi arid region of India. Int. J. Hydrol. Res. 39(3), 191–200 (2008)

    Article  Google Scholar 

  21. D’Asaro, F., Grillone, G.: Empirical investigation of curve number method parameters in the Mediterranean area. J. Hydrol. Eng. 17, 1141–1152 (2012)

    Article  Google Scholar 

  22. D’Asaro, F., Grillone, G., Hawkins, R.H.: Curve number: empirical evaluation and comparison with curve number handbook tables in sicily. J. Hydrol. Eng. 19(12), 04014035 (2014)

    Article  Google Scholar 

  23. Lal, M., Mishra, S.K., Pandey, A.: Physical verification of the effect of land features and antecedent moisture on runoff curve number. Catena 133, 318–327 (2015)

    Article  Google Scholar 

  24. Stewart, D., Canfield, E., Hawkins, R.H.: Curve number determination methods and uncertainty in hydrologic soil groups from semiarid watershed data. J. Hydrol. Eng. 17, 1180–1187 (2012)

    Article  Google Scholar 

  25. Soulis, K.X., Valiantzas, J.D.: SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds—the two-CN system approach. J. Hydrol. Earth Sys. Sci. 16, 1001–1015 (2012)

    Article  Google Scholar 

  26. Tedela, N.H., McCutcheon, S.C., Rasmussen, T.C., Tollner, E.W.: Evaluation and improvement of the curve number method of hydrological analysis on selected forested watersheds of Georgia. Project report submitted to Georgia Water Resources Institute, Supported by the U.S. Geological Survey, p. 40 (2008)

    Google Scholar 

  27. Mandal, U.K., Sharma, K.L., Prasad, J.V.N.S., Reddy, B.S., Narsimlu, B., Saikia, U.S., Adake, R.V., Yadaiah, P., Masane, R.N., Venkanna, K., Venkatravamma, K., Satyam, B., Raju, B., Srivastava, N.N.: Nutrient losses by runoff and sediment from an agricultural field in semi-arid tropical India, Indian. J. Dryland Agric. Res. Dev. 27(1), 01–09 (2012)

    Google Scholar 

  28. Hawkins, R.H.: Improved prediction of storm runoff in mountain watershed. Irrig. Drain. Div. ASCE 99, 519–523 (1973)

    Google Scholar 

  29. Bonta, J.V.: Determination of watershed curve number using derived distributions. J. Irrig. Drain. Div. 123(1), 28–36 (1997)

    Article  Google Scholar 

  30. NRCS: ‘Hydrology’ National Engineering Handbook, Supplement A, Section 4, Soil Conservation Service, USDA, Washington, DC (1997)

    Google Scholar 

  31. Mays, L.W.: Water Resources Engineering, 2nd edn. Willey, Arizona. ISBN: 978-0-470-46064-1 (2005)

    Google Scholar 

  32. Hawkins, R.H., Hjelmfelt, A.T., Zevenbergen, A.W.: Runoff probability, storm depth, and curve numbers. J. Irrig. Drain. Eng. 111(4), 330–340 (1985)

    Article  Google Scholar 

  33. Hjelmfelt, A.T.: Empirical-investigation of curve number techniques. J. Hydraul. Eng. Div. 106(9), 1471–1476 (1980)

    Google Scholar 

  34. Hjelmfelt, A.T., Kramer, K.A., Burwell, R.E.: Curve numbers as random variables. In: Proceedings of International Symposium (1982)

    Google Scholar 

  35. Nash, J.E., Sutcliffe, J.E.: Modeling infiltration during steady rain. Water Resour. Res. 9, 384–394 (1970)

    Google Scholar 

  36. Legates, D.R., McCabe, G.J.: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydro climatic model validation. Water Resour. Res. 35(1), 233–241 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This research (site 1) was supported by a grant from the Indian National Committee on Surface Water (INCSW) and Ministry of Water Resources, Govt. of India, New Delhi under the Research and Development project (MOW-627-WRD) on “Experimental Verification of SCS Runoff Curve Numbers for Selected Soils and Land Uses.” Special thanks to the Mondal et al. [27] for providing the 40 rainfall–runoff data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lal, M., Mishra, S.K., Pandey, A., Kumar, Y. (2017). Runoff Curve Number for 36 Small Agricultural Plots at Two Different Climatic Conditions in India. In: Garg, V., Singh, V., Raj, V. (eds) Development of Water Resources in India. Water Science and Technology Library, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-319-55125-8_22

Download citation

Publish with us

Policies and ethics