Skip to main content

A Benchmark Structure for Validation of Experimental Substructuring, Transfer Path Analysis and Source Characterisation Techniques

  • Conference paper
  • First Online:
Dynamics of Coupled Structures, Volume 4

Abstract

This paper presents a practical study on popular Experimental Dynamic Substructuring topics. A series of substructures is designed of such complexity to fit in right between “real life” structures as often found in industrial applications and “academic” structures which are typically the simplest models to identify a particular phenomenon. The designed benchmark structure comprises an active side with a vibration source, a passive side and a test rig for source characterisation. The connectivity is scalable in complexity, meaning that a single-point, two-point and continuous interface can be established. Substructuring-compatible component models are obtained from impact measurements using the Virtual Point Transformation. The vibration source on the active structure is characterised on the test rig using the in-situ TPA concept. Hereafter the component TPA method is applied to simulate the response on the passive side of the coupled structure, in turn obtained using dynamic substructuring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the paper in the proceedings of SEM IMAC 2017: M. Wernsen et al. An indicator sensor criterion for in-situ characterisation of source vibrations.

  2. 2.

    Bad impacts can for instance be caused by a low impact energy in the frequency range of interest, low signal-to noise ratio, poor reachability with an impact hammer due to geometric constraints, double pulses, etcetera.

  3. 3.

    For an accelerance driving point FRF, the phase should be bounded by 0 and +180.

    Fig. 26.7
    figure 7

    Application of dynamic substructuring: assembled FRFs of AB (blue) in two-point coupling configuration, compared against the validation measurement (red). (a ) Driving-point FRF for VP3 in Z-direction. (b ) Transfer FRF for an internal impact point on A to an internal acceleration response on B, both in Z-direction

References

  1. van der Seijs, M.V., de Klerk, D., Rixen, D.J.: General framework for transfer path analysis: history, theory and classification of techniques. Mech. Syst. Signal Process. 68–69, 217–244 (2016). doi:10.1016/j.ymssp.2015.08.004

    Article  Google Scholar 

  2. Hurty, W.C.: Vibrations of structural systems by component mode synthesis. J. Eng. Mech. Div. 86 (4), 51–70 (1960)

    Google Scholar 

  3. Craig, R.R.J., Bampton, M.C.C.: Coupling of substructures using component mode synthesis. AIAA J. 6 (7), 1313–1319 (1968). doi:10.2514/3.2947

    Article  MATH  Google Scholar 

  4. Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. 13 (8), 995–1006 (1975). doi:10.2514/3.60497

    Article  MATH  Google Scholar 

  5. de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review and classifcation of techniques. AIAA J. 46 (8), 1169–1181 (2008). doi:10.2514/1.33274

    Article  Google Scholar 

  6. Plunt, J.: Finding and fixing vehicle NVH problems with transfer path analysis. Sound Vib. 39 (11), 12–16 (2005)

    Google Scholar 

  7. van der Auweraer, H., Mas, P., Dom, S., Vecchio, A., Janssens, K., van de Ponseele, P.: Transfer path analysis in the critical path of vehicle refinement: the role of fast, hybrid and operational path analysis. Technical report 2007-01-2352, SAE technical paper (2007). doi:10.4271/2007-01-2352

  8. Sjövall, P.: Identification and Synthesis of Components for Vibration Transfer Path Analysis. Chalmers University of Technology, Gothenburg (2007)

    Google Scholar 

  9. de Klerk, D.: Dynamic response characterization of complex systems through operational identification and dynamic substructuring. Ph.D. thesis, Delft University of Technology (2009)

    Google Scholar 

  10. Scheuren, J., Lohrmann, M.: Transfer path analysis – experiences, expectations and perspectives. In: International Noise and Vibration Colloquium. SAE Brazil, Sao Paulo (2014)

    Book  Google Scholar 

  11. Mondot, J.M., Petersson, B.A.T.: Characterization of structure-borne sound sources: the source descriptor and the coupling function. J. Sound Vib. 114 (3), 507–518 (1987). doi:10.1016/S0022-460X(87)80020-2

    Article  Google Scholar 

  12. Petersson, B.A.T., Gibbs, B.M.: Use of the source descriptor concept in studies of multi-point and multi-directional vibrational sources. J. Sound Vib. 168 (1), 157–176 (1993). doi:10.1006/jsvi.1993.1367

    Article  MATH  Google Scholar 

  13. ISO Technical Committee 43/Subcommittee 1/Workgroup 22 (ISO/TC43/SC1/WG22): Acoustics – characterization of sources of structure-borne sound with respect to sound radiation from connected structures – measurement of velocity at the contact points of machinery when resiliently mounted, ISO 9611, International Standards Organisation (1996)

    Google Scholar 

  14. Moorhouse, A.T.: On the characteristic power of structure-borne sound sources. J. Sound Vib. 248 (3), 441–459 (2001). doi:10.1006/jsvi.2001.3797

    Article  Google Scholar 

  15. Moorhouse, A.T., Elliott, A.S., Evans, T.A.: In situ measurement of the blocked force of structure-borne sound sources. J. Sound Vib. 325 (4–5), 679–685 (2009). doi:10.1016/j.jsv.2009.04.035

    Article  Google Scholar 

  16. Rixen, D.J., Boogaard, A., van der Seijs, M.V., van Schothorst, G., van der Poel, T.: Vibration source description in substructuring: a theoretical depiction. Mech. Syst. Signal Process. 6061, 498–511 (2015). doi:10.1016/j.ymssp.2015.01.024

  17. Madsen, M.B.: Electrical power assisted steering – dynamic source strength characteristic and vehicle NVH prediction. Master’s thesis, University of Southern Denmark (2014)

    Google Scholar 

  18. van der Seijs, M.V.: Experimental dynamic substructuring: analysis and design strategies for vehicle development. Ph.D. thesis, Delft University of Technology (2016). doi:10.4233/uuid:28b31294-8d53-49eb-b108-284b63edf670

  19. Botelho, R.M., Christenson, R.E.: Mathematical equivalence between dynamic substructuring and feedback control theory. In: Dynamics of Coupled Structures. Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, vol. 4, chapter 3, pp. 31–40. Springer, New York (2015). doi:10.1007/978-3-319-15209-7_4

  20. Franco, J.A., Botelho, R.M., Christenson, R.E.: Controls based hybrid sub-structuring approach to transfer path analysis. In: Dynamics of Coupled Structures. Proceedings of the 34rd IMAC, A Conference and Exposition on Structural Dynamics, vol. 4, chapter 3, pp. 15–24. Springer, New York (2016). doi:10.1007/978-3-319-29763-7_3

  21. Elliott, A.S., Moorhouse, A.T., Huntley, T., Tate, S.: In-situ source path contribution analysis of structure borne road noise. J. Sound Vib. 332 (24), 6276–6295 (2013). doi:10.1016/j.jsv.2013.05.031

    Article  Google Scholar 

  22. van der Seijs, M.V., Pasma, E.A., de Klerk, D., Rixen, D.J.: A comparison of two component TPA approaches for steering gear noise prediction. In: Dynamics of Coupled Structures. Proceedings of the 33rd IMAC, A Conference and Exposition on Structural Dynamics, vol. 4, chapter 7, pp. 71–79. Springer, New York (2015). doi:10.1007/978-3-319-15209-7_7

  23. Lennström, D., Olsson, M., Wullens, F., Nykänen, A.: Validation of the blocked force method for various boundary conditions for automotive source characterization. Appl. Acoust. 102, 108–119 (2016). doi:10.1016/j.apacoust.2015.08.019

    Article  Google Scholar 

  24. D’Ambrogio, W., Fregolent, A.: Decoupling procedures in the general framework of frequency based substructuring. In: Proceedings of the XXVII International Modal Analysis Conference (IMAC), Orlando. Society for Experimental Mechanics, Bethel (2009)

    Google Scholar 

  25. Voormeeren, S., Rixen, D.: A family of substructure decoupling techniques based on a dual assembly approach. Mech. Syst. Signal Process. 27 (18), 379 (2012). doi:10.1016/j.ymssp.2011.07.028

    Article  Google Scholar 

  26. Allen, M., Mayes, R., Bergman, E.: Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections. J. Sound Vib. 329 (23), 4891–4906 (2010). doi:10.1016/j.jsv.2010.06.007

    Article  Google Scholar 

  27. Mayes, R.L., Rohe, D.P.: Coupling experimental and analytical substructures with a continuous connection using the transmission simulator method. In: Topics in Experimental Dynamic Substructuring. Proceedings of the 31st IMAC, A Conference on Structural Dynamics, vol. 2, chapter 10, pp. 123–135. Springer, New York (2013). doi:10.1007/978-1-4614-6540-9_10

  28. Wikipedia, Dynamic substructuring – Wikipedia, the free encyclopedia (2016). Accessed July 2016

    Google Scholar 

  29. van der Seijs, M.V., van den Bosch, D.D., Rixen, D.J., de Klerk, D.: An improved methodology for the virtual point transformation of measured frequency response functions in dynamic substructuring. In: Papadrakakis, M., Papadopoulos, V., Plevris, V. (eds.) 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN), Kos Island, pp. 4334–4347 (2013). doi:10.13140/RG.2.1.2715.3126

  30. Voormeeren, S.N.: Dynamic substructuring methodologies for integrated dynamic analysis of wind turbines. Ph.D. thesis, Delft University of Technology (2012). doi:10.4233/uuid:f45f0548-d5ec-46aa-be7e-7f1c2b57590d

  31. de Klerk, D., Rixen, D., de Jong, J.: The frequency based substructuring method reformulated according to the dual domain decomposition method. In: Proceedings of the XXIV International Modal Analysis Conference (IMAC), St. Louis. Society for Experimental Mechanics, Bethel (2006)

    Google Scholar 

  32. Moorhouse, A.T., Seiffert, G.: Characterisation of an airborne sound source for use in a virtual acoustic prototype. J. Sound Vib. 296 (1–2), 334–352 (2006). doi:10.1016/j.jsv.2006.03.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

van der Seijs, M.V., Pasma, E.A., van den Bosch, D.D., Wernsen, M.W.F. (2017). A Benchmark Structure for Validation of Experimental Substructuring, Transfer Path Analysis and Source Characterisation Techniques. In: Allen, M., Mayes, R., Rixen, D. (eds) Dynamics of Coupled Structures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54930-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54930-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54929-3

  • Online ISBN: 978-3-319-54930-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics