Skip to main content

Impossible Differentials of SPN Ciphers

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10143))

Included in the following conference series:

Abstract

An upper bound of the length of impossible differentials for an SPN structure was presented at EUROCRYPT 2016. This paper mainly focuses on the lengths of impossible differentials for two specific SPN structures. The details of the S-boxes could be exploited to construct longer impossible differentials for ciphers adopting these structures. For Kuznyechik and the internal permutation of PHOTON, we can construct 3-round and 5-round impossible differentials, respectively. The lengths of impossible differentials of these two ciphers are 1 more round compared with the lengths of impossible differentials of the structures deduced from the corresponding ciphers.

The work in this paper is supported by the National Natural Science Foundation of China (No: 61672530, 61402515), the Foundation of Science and Technology on Information Assurance laboratory (No: KJ-14-003), and the Research Fund for the doctoral program of Higher Education of China (RFDP No: 2012150112004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, New York (1993)

    Book  MATH  Google Scholar 

  2. Knudsen, L.R.: DEAL – A 128-bit Block Cipher. Technical report, Department of Informatics, University of Bergen, Norway (1998)

    Google Scholar 

  3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_2

    Chapter  Google Scholar 

  4. Blondeau, C.: Impossible differential attack on 13-round Camellia-192. Inf. Process. Lett. 115(9), 660–666 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8_10

    Google Scholar 

  6. Li, R., Sun, B., Li, C.: Impossible differential cryptanalysis of SPN ciphers. IET Inf. Secur. 5(2), 111–120 (2011)

    Article  Google Scholar 

  7. Sun, B., Zhang, P., Li, C.: Impossible differential and integral cryptanalysis of zodiac. J. Softw. 22(8), 1911–1917 (2011)

    Article  MathSciNet  Google Scholar 

  8. Kim, J., Hong, S., Lim, J.: Impossible differential cryptanalysis using matrix method. Discrete Math. 310(5), 988–1002 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differentials of block cipher structures. Inf. Sci. 263, 211–220 (2014)

    Article  MATH  Google Scholar 

  10. Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34931-7_17

    Chapter  Google Scholar 

  11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  12. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89754-5_22

    Chapter  Google Scholar 

  13. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossible differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17401-8_20

    Chapter  Google Scholar 

  14. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon, E.-J., Lee, S., Lee, J., Chee, S., Han, D., Hong, J.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24691-6_32

    Chapter  Google Scholar 

  15. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced round ARIA and Camellia. J. Comput. Sci. Technol. 22(3), 449–456 (2007)

    Article  Google Scholar 

  16. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: a 128-Bit block cipher suitable for multiple platforms-design and analysis. In: Stinson, D.R., Tavares, S.E. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)

    Google Scholar 

  17. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li, C.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_5

    Chapter  Google Scholar 

  18. Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 196–213. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_8

    Chapter  Google Scholar 

  19. Bouillaguet, C., Dunkelman, O., Fouque, P.-A., Leurent, G.: New insights on impossible differential cryptanalysis. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 243–259. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28496-0_15

    Chapter  Google Scholar 

  20. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: a bit-slice ultra-lightweight block cipher suitable for multiple platforms. Sci. China Inf. Sci. 58(12), 1–15 (2015). Springer, Heidelberg

    Google Scholar 

  21. Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., Trifonov, D.: Low-weight and Hi-End: draft Russian encryption standard. In: CTCrypt, vol. 2014, pp. 183–188 (2014)

    Google Scholar 

  22. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 2nd edn. North-Holland Publishing Company, Amsterdam (1986)

    MATH  Google Scholar 

  23. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9_22

    Chapter  Google Scholar 

  24. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_13

    Chapter  Google Scholar 

  25. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossible differential cryptannalysis of reduced Camellia and MISTY1. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqiang Liu or Chao Li .

Editor information

Editors and Affiliations

Appendices

A The Linear Transformation Matrix P and the Inverse Transformation Matrix \(P^{-1}\) of Kuznyechik

$$\begin{aligned} \small P= \left( \begin{array}{cccccccccccccccc} cf&{} 98&{} 74&{} bf&{} 93&{} 8e&{} f2&{} f3&{} 0a&{} bf&{} f6&{} a9&{} ea&{} 8e&{} 4d&{} 6e\\ 6e&{} 20&{} c6&{} da&{} 90&{} 48&{} 89&{} 9c&{} c1&{} 64&{} b8&{} 2d&{} 86&{} 44&{} d0&{} a2\\ a2&{} c8&{} 87&{} 70&{} 68&{} 43&{} 1c&{} 2b&{} a1&{} 63&{} 30&{} 6b&{} 9f&{} 30&{} e3&{} 76\\ 76&{} 33&{} 10&{} 0c&{} 1c&{} 11&{} d6&{} 6a&{} a6&{} d7&{} f6&{} 49&{} 07&{} 14&{} e8&{} 72\\ 72&{} f2&{} 6b&{} ca&{} 20&{} eb&{} 02&{} a4&{} 8d&{} d4&{} c4&{} 01&{} 65&{} dd&{} 4c&{} 6c\\ 6c&{} 76&{} ec&{} 0c&{} c5&{} bc&{} af&{} 6e&{} a3&{} e1&{} 90&{} 58&{} 0e&{} 02&{} c3&{} 48\\ 48&{} d5&{} 62&{} 17&{} 06&{} 2d&{} c4&{} e7&{} d5&{} eb&{} 99&{} 78&{} 52&{} f5&{} 16&{} 7a\\ 7a&{} e6&{} 4e&{} 1a&{} bb&{} 2e&{} f1&{} be&{} d4&{} af&{} 37&{} b1&{} d4&{} 2a&{} 6e&{} b8\\ b8&{} 49&{} 87&{} 14&{} cb&{} 8d&{} ab&{} 49&{} 09&{} 6c&{} 2a&{} 01&{} 60&{} 8e&{} 4b&{} 5d\\ 5d&{} d4&{} b8&{} 2f&{} 8d&{} 12&{} ee&{} f6&{} 08&{} 54&{} 0f&{} f3&{} 98&{} c8&{} 7f&{} 27\\ 27&{} 9f&{} be&{} 68&{} 1a&{} 7c&{} ad&{} c9&{} 84&{} 2f&{} eb&{} fe&{} c6&{} 48&{} a2&{} bd\\ bd&{} 95&{} 5e&{} 30&{} e9&{} 60&{} bf&{} 10&{} ef&{} 39&{} ec&{} 91&{} 7f&{} 48&{} 89&{} 10\\ 10&{} e9&{} d0&{} d9&{} f3&{} 94&{} 3d&{} af&{} 7b&{} ff&{} 64&{} 91&{} 52&{} f8&{} 0d&{} dd\\ dd&{} 99&{} 75&{} ca&{} 97&{} 44&{} 5a&{} e0&{} 30&{} a6&{} 31&{} d3&{} df&{} 48&{} 64&{} 84\\ 84&{} 2d&{} 74&{} 96&{} 5d&{} 77&{} 6f&{} de&{} 54&{} b4&{} 8d&{} d1&{} 44&{} 3c&{} a5&{} 94\\ 94&{} 20&{} 85&{} 10&{} c2&{} c0&{} 01&{} fb&{} 01&{} c0&{} c2&{} 10&{} 85&{} 20&{} 94&{} 01\\ \end{array} \right) \end{aligned}$$
$$\begin{aligned} \small P^{-1}= \left( \begin{array}{cccccccccccccccc} 01&{} 94&{} 20&{} 85&{} 10&{} c2&{} c0&{} 01&{} fb&{} 01&{} c0&{} c2&{} 10&{} 85&{} 20&{} 94\\ 94&{} a5&{} 3c&{} 44&{} d1&{} 8d&{} b4&{} 54&{} de&{} 6f&{} 77&{} 5d&{} 96&{} 74&{} 2d&{} 84\\ 84&{} 64&{} 48&{} df&{} d3&{} 31&{} a6&{} 30&{} e0&{} 5a&{} 44&{} 97&{} ca&{} 75&{} 99&{} dd\\ dd&{} 0d&{} f8&{} 52&{} 91&{} 64&{} ff&{} 7b&{} af&{} 3d&{} 94&{} f3&{} d9&{} d0&{} e9&{} 10\\ 10&{} 89&{} 48&{} 7f&{} 91&{} ec&{} 39&{} ef&{} 10&{} bf&{} 60&{} e9&{} 30&{} 5e&{} 95&{} bd\\ bd&{} a2&{} 48&{} c6&{} fe&{} eb&{} 2f&{} 84&{} c9&{} ad&{} 7c&{} 1a&{} 68&{} be&{} 9f&{} 27\\ 27&{} 7f&{} c8&{} 98&{} f3&{} 0f&{} 54&{} 08&{} f6&{} ee&{} 12&{} 8d&{} 2f&{} b8&{} d4&{} 5d\\ 5d&{} 4b&{} 8e&{} 60&{} 01&{} 2a&{} 6c&{} 09&{} 49&{} ab&{} 8d&{} cb&{} 14&{} 87&{} 49&{} b8\\ b8&{} 6e&{} 2a&{} d4&{} b1&{} 37&{} af&{} d4&{} be&{} f1&{} 2e&{} bb&{} 1a&{} 4e&{} e6&{} 7a\\ 7a&{} 16&{} f5&{} 52&{} 78&{} 99&{} eb&{} d5&{} e7&{} c4&{} 2d&{} 06&{} 17&{} 62&{} d5&{} 48\\ 48&{} c3&{} 02&{} 0e&{} 58&{} 90&{} e1&{} a3&{} 6e&{} af&{} bc&{} c5&{} 0c&{} ec&{} 76&{} 6c\\ 6c&{} 4c&{} dd&{} 65&{} 01&{} c4&{} d4&{} 8d&{} a4&{} 02&{} eb&{} 20&{} ca&{} 6b&{} f2&{} 72\\ 72&{} e8&{} 14&{} 07&{} 49&{} f6&{} d7&{} a6&{} 6a&{} d6&{} 11&{} 1c&{} 0c&{} 10&{} 33&{} 76\\ 76&{} e3&{} 30&{} 9f&{} 6b&{} 30&{} 63&{} a1&{} 2b&{} 1c&{} 43&{} 68&{} 70&{} 87&{} c8&{} a2\\ a2&{} d0&{} 44&{} 86&{} 2d&{} b8&{} 64&{} c1&{} 9c&{} 89&{} 48&{} 90&{} da&{} c6&{} 20&{} 6e\\ 6e&{} 4d&{} 8e&{} ea&{} a9&{} f6&{} bf&{} 0a&{} f3&{} f2&{} 8e&{} 93&{} bf&{} 74&{} 98&{} cf\\ \end{array} \right) \end{aligned}$$

B Proof of Theorem 2

To prove Theorem 2, we only need calculate \(\gamma (P)\) and \(\gamma (P^{-1})\). The linear transformation \(P=MC\circ SR\), which is an \(d^2\times d^2\) matrix. According to the definition of \(\gamma (P)\), we have \(P^*\ge 0, \gamma (P)>1\), where \(P^*\) is the characteristic matrix of P. Thus we consider whether \((P^*)^2>0\).

We denote \((P^*)^2=(q_{ij})\), thus \(q_{ij}=0\) means that the i-th output byte of the 2-round SPN cipher is independent of the j-th input byte. Furthermore, when \(Y=(P\circ S)^2(X)\), we denote \(X=(x_0, x_1, \cdots , x_{d^2-1}), Y=(y_0, y_1, \cdots , y_{d^2-1})\), where \(x_i,y_i\in \mathbb {F}_{2^n}\). If we can prove that any \(x_i\) is dependent on all \(y_j\), then \((P^*)^2>0\).

Assume that \(X_1=(\underbrace{0,0,\ldots ,0}_{i-1},x_i,0,\ldots ,0), x_i\in \mathbb {F}_{2^n}^{*}\), \(Y_1=S(X_1)\), there is only one element of \(Y_1\) related to \(x_i\). We denote \(Y_2=P(Y_1)=MC\circ SR(Y_1)\), since the MC matrix is a \(d\times d\) MDS matrix, there is one column of \(Y_2\) which is viewed as a \(d\times d\) matrix related to \(x_i\). We denote \(Y=P\circ S(Y_2)\), since the index transformation of ShiftRows is a permutation and the MC matrix is a \(d\times d\) MDS matrix, all elements of Y are dependent on \(x_i\).

Therefore, \(\gamma (P)=2\). Similarly, with the same method, we get \(\gamma (P^{-1})=2\). Furthermore, \(\gamma (P)+\gamma (P^{-1})=4\). Note that we can construct 4-round impossible differentials for \(\varepsilon ^(2)(n,d)\) when the input difference \(\alpha \) and the output difference \(\beta \) such that \(H(\alpha )=H(\beta )=1\).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shen, X., Liu, G., Sun, B., Li, C. (2017). Impossible Differentials of SPN Ciphers. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54705-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54704-6

  • Online ISBN: 978-3-319-54705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics