Skip to main content

Codes for Detection of Limited View Algebraic Tampering

  • Conference paper
  • First Online:
Book cover Information Security and Cryptology (Inscrypt 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10143))

Included in the following conference series:

  • 1076 Accesses

Abstract

Tamper resilient cryptography has recently gained attention, and novel coding solutions have been proposed. One such solutions is Tamper Detection (TD) codes that are used to detect tampering with a codeword when the tampering function belongs to a specified family of functions. We consider TD codes when the class of functions consists of functions where the adversary first selects a subset of size \(\rho n\) of the codeword components to see, and then uses this view to choose a noise vector that will be added (algebraically) to the codeword (n is the codeword length). We show it is impossible to construct codes that protect against tampering of all functions in this class. By removing the set of bad functions from the class, we obtain a subset of this family for which tamper detection codes exist, and give a construction of tamper detection codes for this subset. We discuss our results and directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The study in [7, 9, 16] are specific to \(q=2\)..

References

  1. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  2. Cheraghchi, M., Didier, F., Shokrollahi, A.: Invertible extractors and wiretap protocols. IEEE Trans. Inf. Theory 58(2), 1254–1274 (2012)

    Article  MathSciNet  Google Scholar 

  3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press, New York, 31 May–3 June 2014

    Google Scholar 

  4. Lin, F., Safavi-Naini, R., Wang, P.: Detecting algebraic manipulation in leaky storage systems. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 129–150. Springer, Cham (2016). doi:10.1007/978-3-319-49175-2_7

    Chapter  Google Scholar 

  5. Simmons, G.J.: Authentication theory/coding theory. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 411–431. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7_32

    Chapter  Google Scholar 

  6. Ahmadi, H., Safavi-Naini, R.: Detection of algebraic manipulation in the presence of leakage. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 238–258. Springer, Cham (2014). doi:10.1007/978-3-319-04268-8_14

    Chapter  Google Scholar 

  7. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6_19

    Google Scholar 

  8. Jafargholi, Z., Wichs, D.: Tamper Detection and Continuous Non-malleable Codes [full version] (2015). http://eprint.iacr.org/2014/956

  9. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Naor, M. (ed.) ITCS 2014, pp. 155–168. ACM, Princeton, 12–14 January 2014

    Google Scholar 

  10. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_19

    Chapter  Google Scholar 

  11. Langberg, M.: Oblivious communication channels and their capacity. IEEE Trans. Inf. Theory 54(1), 424–429 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. At & T Bell Lab. Techn. J. 63(10), 2135–2157 (1984)

    Article  MATH  Google Scholar 

  13. Wang, P., Safavi-Naini, R., Lin, F.: Erasure adversarial wiretap channels. In: 53rd Annual Allerton Conference on Communication, Control, and Computing (2015)

    Google Scholar 

  14. Wang, P., Safavi-Naini, R.: Limited view adversary codes: bounds, constructions and applications. In: ICITS 2015, pp. 214–235 (2015)

    Google Scholar 

  15. Wang, P., Safavi-Naini, R.: A model for adversarial wiretap channels. IEEE Trans. Inf. Theory 62(2) (2016)

    Google Scholar 

  16. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_7

    Chapter  Google Scholar 

  17. Safavi-Naini, R., Wang, P.: Codes for limited view adversarial channels. In: IEEE International Symposium on Information Theory (ISIT), pp. 266–270 (2013)

    Google Scholar 

  18. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Techn. J. 29, 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  19. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3_27

    Chapter  Google Scholar 

  20. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452 (2010)

    Google Scholar 

  21. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_14

    Chapter  Google Scholar 

  22. Guruswami, V., Smith, A.: Codes for computationally simple channels: explicit constructions with optimal rate. In: FOCS, pp. 723–732 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchun Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lin, F., Safavi-Naini, R., Wang, P. (2017). Codes for Detection of Limited View Algebraic Tampering. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54705-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54704-6

  • Online ISBN: 978-3-319-54705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics