Skip to main content

Are Myristica fragrans L. (Myristicaceae) and Its Phytochemicals Useful for Human Health?

  • Living reference work entry
  • First Online:
  • 590 Accesses

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

From Myristica fragrans L. (Myristicaceae) two spices, nutmeg and mace, were obtained. This plant is traditionally used in China, India, and African countries for the treatment of several diseases, such as decreased appetite, diarrhea, muscle spasm, rheumatism, etc. Recently, M. fragrans has been investigated for antioxidant, anticonvulsant, analgesic, anti-inflammatory, antidiabetic, hypolipidemic and hypocholesterolemic, antibacterial, and antifungal potential.

A perusal analysis of literature evidenced that M. fragrans deserves more attention by scientific community to explore its full range of bioactivity in the welfare of the society especially in emergent Countries.

This is a preview of subscription content, log in via an institution.

Abbreviations

5-HT:

Serotonin

AChE:

Acetylcholinesterase

AMPK:

AMP-activated protein kinase

BChE:

Butyrylcholinesterase

DM:

Diabetes mellitus

GABA:

γ-Aminobutyric acid

IL:

Interleukin

LDH-A:

Lactate dehydrogenase

MCP:

Monocyte chemotactic protein

MIP:

Macrophage inflammatory protein

NO:

Nitric oxide

PAS:

Peripheral anionic site

THF:

Tetrahydrofuran mixture

References

  1. Pal M, Srivastava M, Soni DK, Kumar A, Tewari SK (2011) Composition and anti-microbial activity of essential oil of Myristica fragrans from Andaman Nicobar Island. Int J Pharm Life Sci 2:1115–1117. https://doi.org/10.5897/AJB12.1043. ISSN 1684-5315

    CAS  Google Scholar 

  2. Abourashed EA, El-Alfy AT (2016) Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg (Myristica fragrans Houtt.) Phytochem Rev 15:1035–1036. https://doi.org/10.1007/s11101-016-9469-x

    Article  CAS  Google Scholar 

  3. American Diabetes Association. http://www.diabetes.org

  4. Somani RS, Singhai AK (2008) Hypoglycaemic and antidiabetic activities of seeds of Myristica fragrans in normoglycaemic and Alloxan-induced diabetic rats. Asian J Exp Sci 7(2):675–80. doi:10.13040/IJPSR.0975-8232.

  5. Patil SB, Ghadyale VA, Taklikar SS, Kulkarni CR, Arvindekar AU (2011) Insulin secretagogue, alpha-glucosidase and antioxidant activity of some selected spices in streptozotocin-induced diabetic rats. Plant Foods Hum Nutr 66:85–90. https://doi.org/10.1007/s11130-011-0215-7

    Article  CAS  Google Scholar 

  6. Ahmad R, Srivastava SP, Maurya R, Rajendran SM, Arya KR, Srivastava AK (2008) Mild antihyperglycaemic activity in Eclipta alba, Berberis aristata, Betula utilis, Cedrus deodara, Myristica fragrans and Terminalia chebula. Indian J Sci Technol 1:1–6. https://doi.org/10.17485/ijst/2008/v1i5/29348

    Google Scholar 

  7. Loizzo MR, Sicari V, Tenuta MC, Leporini MR, Falco T, Pellicanò TM, Menichini F, Tundis R (2016) Phytochemicals content, antioxidant and hypoglycaemic activities of commercial nutmeg mace (Myristica fragrans L.) and pimento (Pimenta dioica (L.) Merr.) Int J Food Sci Technol 51:2057–2063. https://doi.org/10.1111/ijfs.13178

    Article  CAS  Google Scholar 

  8. Han KL, Choi JS, Lee JY, Song J, Joe MK, Jung MH, Hwang JK (2008) Therapeutic potential of peroxisome proliferator-activated receptor-alpha/gamma dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes 57:737–745. https://doi.org/10.2337/db07-0972

    Article  CAS  Google Scholar 

  9. Poornima B, Anand Kumar D, Siva B, Venkanna A, Vadaparthi PR, Kumar K, Tiwari AK, Suresh Babu K (2016) Advanced glycation end-products inhibitors isolated from Schisandra grandiflora. Nat Prod Res 30:493–496. https://doi.org/10.1080/14786419.2015.1024117

    Article  CAS  Google Scholar 

  10. Ram A, Lauria P, Gupta R, Sharma VN (1996) Hypolipidaemic effect of Myristica fragrans fruit extract in rabbits. J Ethnopharmacol 55:49–53

    Article  CAS  Google Scholar 

  11. Misra P (2008) AMP activated protein kinase: a next generation target for total metabolic control. Expert Opin Ther Targets 12:91–100. https://doi.org/10.1517/14728222.12.1.91

    Article  CAS  Google Scholar 

  12. Nguyen PH, Le TV, Kang HW, Chae J, Kim SK, Kwon KI, Seo DB, Lee SJ, Oh WK (2010) AMP-activated protein kinase (AMPK) activators from Myristica fragrans (nutmeg) and their anti-obesity effect. Bioorg Med Chem Lett 20:4128–4131. https://doi.org/10.1016/j.bmcl.2010.05.067

    Article  CAS  Google Scholar 

  13. Olajide OA, Makinde JM, Awe SO (2000) Evaluation of the pharmacological properties of nutmeg oil in rats and mice. Pharm Biol 38:385–390. https://doi.org/10.1076/phbi.38.5.385.5976

    Article  CAS  Google Scholar 

  14. Olajide OA, Ajayi FF, Ekhelar AI, Awe SO, Makinde JM, Alada AR (1999) Biological effects of Myristica fragrans fruits extract in rabbits. Phytother. Res 13:344–345. https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<344::AID-PTR436>3.0.CO;2-E

    Article  CAS  Google Scholar 

  15. Lee JY, Park W (2011) Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules 16:7132–7142. https://doi.org/10.3390/molecules16087132

    Article  CAS  Google Scholar 

  16. Ma J, Hwang YK, Cho WH, Han SH, Hwang JK, Han JS (2009) Macelignan attenuates activations of mitogen-activated protein kinases and nuclear factor kappa B induced by lipopolysaccharide in microglial cells. Biol Pharm Bull 32:1085–1090. https://doi.org/10.1248/bpb.32.1085

    Article  CAS  Google Scholar 

  17. Ma CJ, Kim SR, Kim J, Kim YC (2005) Meso-dihyrdoguaiaretic acid and licarin A of Machilus thunbergii protects against glutamate-induced toxicity in primary cultures of a rat cortical cells. Br J Pharmacol 146:752–759. https://doi.org/10.1038/sj.bjp.0706380

    Article  CAS  Google Scholar 

  18. Maity B, Banerjee D, Bandyopadhyay SK, Chattopadhyay S (2009) Regulation of arginase/nitric oxide synthesis axis via cytokine balance contributes to the healing action of malabaricone B against indomethacin-induced gastric ulceration in mice. Int Immunopharmacol 9:491–498. https://doi.org/10.1016/j.intimp.2009.01.028

    Article  CAS  Google Scholar 

  19. Zhang WK, Tao SS, Li TT, Li YS, Li XJ, Tang HB, Cong RH, Ma FL, Wan CJ (2016) Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutr Res 60:30849. 1–10. https://doi.org/10.3402/fnr.v60.30849

    Article  Google Scholar 

  20. Hayfaa AA, Sahar AM, Awatif MA (2013) Evaluation of analgesic activity and toxicity of alkaloids in Myristica fragrans seeds in mice. J Pain Res 31:611–661. https://doi.org/10.2147/JPR.S45591

    Article  Google Scholar 

  21. Piras A, Rosa A, Marongiu B, Atzeri A, Dessì MA, Falconieri D, Porcedda S (2012) Extraction and separation of volatile and fixed oils from seeds of Myristica fragrans by supercritical CO2: chemical composition and cytotoxic activity on Caco-2 cancer cells. J Food Sci 77:C448–C453. https://doi.org/10.1111/j.1750-3841.2012.02618.x

    Article  CAS  Google Scholar 

  22. Piaru SP, Mahmud R, Abdul Majid AM, Ismail S, Man CN (2012) Chemical composition, antioxidant and cytotoxicity activities of the essential oils of Myristica fragrans and Morinda citrifolia. J Sci Food Agric 92:593–597. https://doi.org/10.1002/jsfa.4613

    Article  CAS  Google Scholar 

  23. Lee BK, Kim JH, Jung JW, Choi JW, Han ES, Lee SH, Ko KH, Ryu JH (2005) Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol Lett 157:49–56. https://doi.org/10.1016/j.toxlet.2005.01.012

    Article  CAS  Google Scholar 

  24. Martins C, Doran C, Silva IC, Miranda C, Rueff J, Rodrigues AS (2014) Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells. Chem Biol Interact 218:1–9. https://doi.org/10.1016/j.cbi.2014.04.014

    Article  CAS  Google Scholar 

  25. Chirathaworn C, Kongcharoensuntorn W, Dechdoungchan T, Lowanitchapat A, Sanguanmoo P, Poovorawan Y (2007) Myristica fragrans Houtt. methanolic extract induces apoptosis in a human leukemia cell line through SIRT1 mRNA downregulation. J Med Assoc Thail 90:2422–2428. https://doi.org/10.1016/j.intimp.2008.01.012

    Google Scholar 

  26. Kim EY, Choi HJ, Park MJ, Jung YS, Lee SO, Kim KJ, Choi JH, Chung TW, Ha KT (2016) Myristica fragrans suppresses tumor growth and metabolism by inhibiting lactate dehydrogenase A. Am J Chin Med 44:1063–1079. https://doi.org/10.1142/S0192415X16500592

    Article  CAS  Google Scholar 

  27. Li F, Yang XW, Krausz KW, Nichols RG, Xu W, Patterson AD, Gonzalez FJ (2015) Modulation of colon cancer by nutmeg. J Proteome Res 14:1937–1946. https://doi.org/10.1021/pr5013152

    Article  CAS  Google Scholar 

  28. Huang M, JJ L, Huang MQ, Bao JL, Chen XP, Wang YT (2012) Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 21:1801–1818. https://doi.org/10.1517/13543784.2012.727395

    Article  CAS  Google Scholar 

  29. Jaiswal P, Kumar P, Singh VK, Singh DK (2009) Biological effects of Myristica fragrans. Ann Rev Biomed Sci 11:21–29. https://doi.org/10.5016/1806-8774.2009v11p21

    Google Scholar 

  30. Firouzi R, Shekarforoush SS, Nazer AH, Borumand Z, Jooyandeh AR (2007) Effects of essential oils of oregano and nutmeg on growth and survival of Yersinia enterocolitica and Listeria monocytogenes in barbecued chicken. J Food Prot 70:2626–2630. https://doi.org/10.4315/0362-028X-70.11.2626

    Article  CAS  Google Scholar 

  31. Cui H, Zhang X, Zhou H, Zhao C, Xiao Z, Lin L, Li C (2015) Antibacterial properties of nutmeg oil in pork and its possible mechanism. J Food Saf 35:370–377. https://doi.org/10.1111/jfs.12184

    Article  CAS  Google Scholar 

  32. Gupta AD, Bansal VK, Babu V, Maithil N (2013) Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol 11:25. https://doi.org/10.1016/B978-0-12-375688-6.10098-2

    Article  Google Scholar 

  33. Shafiei Z, Shuhairi NN, Yap N, Sibungkil C-AH, Latip J (2012). Antibacterial activity of Myristica Fragrans against oral pathogens. J Evid Based Complement Alternat Med, Article ID 825362:7. doi:https://doi.org/10.1155/2012/825362

  34. Mahady GB, Pendland SL, Stoia A, Hamill FA, Fabricant D, Dietz BM, Chadwick LR (2005) In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytother Res 19:988–991. https://doi.org/10.1002/ptr.1776

    Article  Google Scholar 

  35. Bhamarapravati S, Juthapruth S, Mahachai W, Mahady G (2006) Antibacterial activity of Boesenbergia rotunda (L.) Mansf. and Myristica fragrans Houtt. against Helicobacter pylori. Songklanakarin J Sci Technol 28:157–163

    Google Scholar 

  36. Orabi KY, Mossa JS, El-Feraly FS (1991) Isolation and characterization of two antimicrobial agents from mace (Myristica fragrans). J Nat Prod 54:856–859. https://doi.org/10.1021/np50075a017

    Article  CAS  Google Scholar 

  37. Yanti RY, Kim KH, Hwang JK (2008) In vitro anti-biofilm activity of macelignan isolated from Myristica fragrans Houtt. against oral primary colonizer bacteria. Phytother Res 22:308–312. https://doi.org/10.1002/ptr.2312

    Article  CAS  Google Scholar 

  38. Valente VMM, Jham GN, Dhingra OD, Ghiviriga I (2011) Composition and antifungal activity of the Brazilian Myristica fragrans Houtt essential oil. J Food Saf 31:197–202. https://doi.org/10.1111/j.1745-4565.2010.00285.x

    Article  CAS  Google Scholar 

  39. Cho JY, Choi GJ, Son SW, Jang KS, Lim HK, Lee SO, Sung ND, Cho KY, Kim JC (2007) Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag Sci 63:935–940. https://doi.org/10.1002/ps.1420

    Article  CAS  Google Scholar 

  40. Pooja V, Goyal SH, Sandashwani AB, Srivastava AK (2012) Activity of Myristica fragrans and its effect against filamentous and nonfilamentous fungus. Int J Pharm Pharm Sci 4:17–20

    Google Scholar 

  41. Sonavane GS, Sarveiya VP, Kasture VS, Kasture SB (2002) Anxiogenic activity of Myristica fragrans seeds. Pharmacol Biochem Behav 71(1–2):239–244. https://doi.org/10.1016/S0091-3057(01)00660-8

    Article  CAS  Google Scholar 

  42. Dhingra D, Sharma A (2006) Antidepressant-like activity of n-hexane extract of nutmeg (Myristica fragrans) seeds in mice. J Med Food 9:84–89. https://doi.org/10.1089/jmf.2006.9.84

    Article  Google Scholar 

  43. Dhingra D, Parle M, kulkarni S (2006) Comparative brain cholinesterase-inhibiting activty of Glycyrrhiza glabra, Myritica fragrans, acorbic acid, and metrofinate in mice. J Med Food 9:281–283. https://doi.org/10.1089/jmf.2006.9.281

    Article  CAS  Google Scholar 

  44. Cuong TD, Hung TM, Han HY, Roh HS, Seok JH, Lee JK, Jeong JY, Choi JS, Kim JA, Min BS (2014) Potent acetylcholinesterase inhibitory compounds from Myristica fragrans. Nat Prod Commun 9:499. https://doi.org/10.1016/j.bmcl.2016.05.046

    CAS  Google Scholar 

  45. Abdul Wahab SM, Sivasothy Y, Liew SY, Litaudon M, Mohamad J, Awang K (2016) Natural cholinesterase inhibitors from Myristica cinnamomea King. Bioorg Med Chem Lett 26:3785–3792. https://doi.org/10.1016/j.bmcl.2016.05.046

    Article  CAS  Google Scholar 

  46. El-Alfy AT, Joseph S, Brahmbhatt A, Akati S, Abourashed EA (2016) Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract. Pharm Biol 54:2933–2938. https://doi.org/10.1080/13880209.2016.1194864

    Article  Google Scholar 

  47. Leiter E, Hitchcock G, Godwin S, Johnson M, Sedgwick W, Jones W, McCall S, Ceremuga T (2011) Evaluation of the anxiolytic properties of myristicin, a component of nutmeg, in the male Sprague-Dawley rat. AANA J 79(2):109. https://doi.org/10.1016/j.brainres.2008.06.042

    Google Scholar 

  48. Kasture SB, Gujar KN (2005) Depressant effect of trimyristin and its inhibition by some antidepressants in mice. In: Bernath J, Nemeth E, Cracker LE, Gardner ZE (eds) Proceedings WOCMAO III 2005, vol 1, Bioprospecting and ethnopharmacology. Acta Hort 675, ISHS, pp 147–152

    Google Scholar 

  49. Kiyofuji K, Kurauchi Y, Hisatsune A, Seki T, Mishima S, Katsuki H (2015) A natural compound maceligna protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression. Eur J Pharmacol 760:129–135. https://doi.org/10.1016/j.ejphar.2015.04.021

    Article  CAS  Google Scholar 

  50. Ma CJ, Kim SR, Kim J, Kim YC (2005) Meso-dihydroguaiaretic acid and licarin A of Machilus thunbergii protect against glutamate-induced toxicity in primary cultures of a rat cortical cells. Br J Pharmacol 146(5):752–759. https://doi.org/10.1038/sj.bjp.0706380.

    Article  CAS  Google Scholar 

  51. Wu N, Xu W, Cao GY, Yang YF, Yang XB, Yang XW (2016) The blood-brain barrier permeability of lignans and malabaricones from the seeds of Myristica fragrans in the MDCK-pHaMDR cell monolayer model. Molecules 21:134–141. https://doi.org/10.3390/molecules21020134

    Article  Google Scholar 

  52. Kang JW, Min BS, Lee JH (2013) Anti-platelet activity of erythro-(7S,8R)-7-acetoxy-3,4,3′,5′-tetramethoxy-8-O-4′-neolignan from Myristica fragrans. Phytother Res 27:1694–1699. https://doi.org/10.1002/ptr.4923

    Article  CAS  Google Scholar 

  53. Ki SH, Lee JW, Lim SC, Hien TT, Im JH, Oh WK, Lee MY, Ji YH, Kim YG, Kang KW (2013) Protective effect of nectandrin B, a potent AMPK activator on neointima formation: inhibition of Pin1 expression through AMPK activation. Br J Pharmacol 168:932–945. https://doi.org/10.1111/j.1476-5381.2012.02228.x

    Article  CAS  Google Scholar 

  54. Lee SU, Shim KS, Ryu SY, Min YK, Kim SH (2009) Machilin A isolated from Myristica fragrans stimulates osteoblast differentiation. Planta Med 75:152–157. https://doi.org/10.1055/s-0028-1112197

    Article  CAS  Google Scholar 

  55. Lee KE, Mun S, Pyun HB, Kim MS, Hwang JK (2012) Effects of macelignan isolated from Myristica fragrans (Nutmeg) on expression of matrix metalloproteinase-1 and type I procollagen in UVB-irradiated human skin fibroblasts. Biol Pharm Bull 35:1669–1675. https://doi.org/10.1016/j.jdermsci.2009.10.005

    Article  CAS  Google Scholar 

  56. Choi EJ, Kang YG, Kim J, Hwang JK (2011) Macelignan inhibits melanosome transfer mediated by protease- activated receptor-2 in keratinocytes. Biol Pharm Bull 34:748–754. https://doi.org/10.1248/bpb.34.748

    Article  CAS  Google Scholar 

  57. Kwon YY, Kim D, Kim J, Hwang JK (2011) Effects of licarin E on expression of matrix metalloproteinase-1 and type-1 procollagen in UVB-irradiated human skin fibroblasts. Phytother Res 25(12):1891–1894. https://doi.org/10.1002/ptr.3521

    Article  CAS  Google Scholar 

  58. Morita T, Jinno K, Kawagishi H, Arimoto Y, Suganuma H, Inakuma T, Sugiyama K (2003) Hepatoprotective effect of myristicin from nutmeg (Myristica fragrans) on lipopolysaccharide/d-galactosamine induced liver injury. J Agric Food Chem 51:1560–1565. https://doi.org/10.1021/jf020946n

    Article  CAS  Google Scholar 

  59. Sohn JH, Han KL, Kim JH, Rukayadi Y, Hwang JK (2008) Protective effects of macelignan on cisplatin induced hepatotoxicity is associated with JNK activation. Biol Pharm Bull 31:273–277. https://doi.org/10.1248/bpb.31.273

    Article  CAS  Google Scholar 

  60. Song JS, Kim EK, Choi YW, Oh WK, Kim YM (2016) Hepatocyte-protective effect of nectandrin B, a nutmeg lignan, against oxidative stress: role of Nrf2 activation through ERK phosphorylation and AMPK-dependent inhibition of GSK-3β. Toxicol Appl Pharmacol 307:138–149. https://doi.org/10.1016/j.taap.2016.08.003

    Article  CAS  Google Scholar 

  61. Hang X, Yang XW (2007) GC-MS analysis of essential oil from nutmeg processed by different traditional methods. Zhongguo Zhong Yao Za Zhi 32:1669–1675. https://doi.org/10.1021/tx300239z

    Google Scholar 

  62. Beyer J, Ehlers D, Maurer HH (2006) Abuse of nutmeg (Myristica fragrans Houtt.): studies on the metabolism and the toxicologic detection of its ingredients elemicin, myristicin, and safrole in rat and human urine using gas chromatography/mass spectrometry. Ther Drug Monit 28:568–575. https://doi.org/10.1097/00007691-200608000-00013

    Article  CAS  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Rosa Loizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Loizzo, M.R., Sicari, V., Xiao, J., Tundis, R. (2017). Are Myristica fragrans L. (Myristicaceae) and Its Phytochemicals Useful for Human Health?. In: Mérillon, JM., Ramawat, K. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54528-8_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54528-8_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54528-8

  • Online ISBN: 978-3-319-54528-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics