Skip to main content

Potential Role of Microbes in Bioremediation of Arsenic

  • Chapter
  • First Online:
Arsenic Contamination in the Environment

Abstract

Arsenic (As) is an extremely toxic metalloid that naturally occurs in the environment from geochemical weathering of rocks, volcanic emission, and anthropogenic activities. The detrimental effects of arsenicals on humans is an increasing menace chiefly due to contaminated drinking water and foods as the levels of As have been elevated in soil and groundwater across the globe. Remediation of arsenic-contaminated soil and groundwater therefore, is an urgent need for providing safe drinking water and food. Bioremediation became an emerging alternative to conventional energy intensive, instrument and chemical based expensive restoration technologies of heavy metal or metalloid contaminated areas of land and water. Bioremediation by microbes (bacteria, fungi, yeast) are quite effective and relies on deliberate action of natural or engineered microbial activity to reduce, mobilize, or immobilize, volatilize As through sorption, bio-methylation, complexation and redox reactions.

To improve the As bioremediation, extensive idea about uptake and the biochemical pathway for metabolism and detoxification of this metalloid by the microbes is necessary. In this review, uptake and metabolism of As in bacteria and fungi and their potential utility on environmental arsenic remediation has been focused.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.) Environ Sci Technol 36:962–968

    Article  CAS  Google Scholar 

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137

    Article  CAS  Google Scholar 

  • Adams P, De-Leij FA, Lynch JM (2007) Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313

    Article  CAS  Google Scholar 

  • Afkar E (2012) Localization of the dissimilatory arsenate reductase in Sulfurospirillum barnesiistrain SeS-3. Amer J Agric Biol Sci 7:97–105

    Article  CAS  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FMM (1994) Microbe grows by reducing arsenic. Nature 371:750

    Article  CAS  Google Scholar 

  • Albarracin VH, Kurth D, Ordonez OF, Belfiore C, Luccini E, Salum GM, Piacentini RD, Farias ME (2015) High-up: a remote reservoir of microbial extremophiles in central Andean wetlands. Front Microbiol 6:1404

    Article  Google Scholar 

  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134

    Article  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  Google Scholar 

  • Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer-Verlag, Berlin, pp 371–406

    Chapter  Google Scholar 

  • Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ulaszewski S (1997) Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast 13:819–828

    Article  CAS  Google Scholar 

  • Branco R, Chung AP, Morais PV (2008) Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiol 8:95

    Article  CAS  Google Scholar 

  • Cao LX, Jiang M, Zeng ZR, Du AX, Tan HM, Liu YH (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. Var. Foliosa bailey) in Cd, Ni contaminated soils. Chemosphere 71:1769–1773

    Article  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Chatterjee S, Mitra A, Datta S, Veer V (2013a) Phytoremediation protocol: an overview. In: Gupta DK (ed) Plant based remediation process. Springer-Verlag, Berlin, pp 1–18

    Chapter  Google Scholar 

  • Chatterjee S, Mitra A, Datta S, Veer V (2013b) Use of wetland plants in bioaccumulation of heavy metals. In: Gupta DK (ed) Plant based remediation process. Springer-Verlag, Berlin, pp 117–139

    Chapter  Google Scholar 

  • Chen Z, Wang Y, Xia D, Jiang X, Fu D, Shen L, Wang H, Li QB (2016) Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. J Hazard Mater 311:20–29

    Article  CAS  Google Scholar 

  • Chipirom K, Tanasupawat S, Akaracharanya A, Leepepatpiboon N, Prange A, Kim KW, Chul LK, Lee JS (2012) Comamonas terrae sp. nov., an arsenite-oxidizing bacterium isolated from agricultural soil in Thailand. J Gen Appl Microbiol 58:245–251

    Article  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Cox DP, Alexander M (1973) Production of trimethylarsine gas from various arsenic compounds by three sewage fungi. Bull Environ Contam Toxicol 9:84–88

    Article  CAS  Google Scholar 

  • Dameron CT, Winge DR (1990) Peptide-mediated formation of quantum semiconductors. Trend Biotechnol 8:3–6

    Article  CAS  Google Scholar 

  • Dey S, Dou DX, Rosen BP (1994) ATP-dependent arsenite transport in everted membrane vesicles of Escherichia coli. J Biol Chem 269:25442–25446

    CAS  Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  CAS  Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res 20:7728–7739

    Article  CAS  Google Scholar 

  • Dua M, Sethunathan N, Johri AK (2002) Biotechnology bioremediation success and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  Google Scholar 

  • Edvantoro BB, Naidu R, Meghraj M, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217

    Article  Google Scholar 

  • Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF (2008) Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Annu Rev N Y Acad Sci 1125:230–241

    Article  CAS  Google Scholar 

  • Gehle K (2009) Substances USAfT, Registry D. Arsenic toxicity. Agency for Toxic Substances and Disease Registry, Atlanta, GA

    Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006

    Article  CAS  Google Scholar 

  • Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria. J Appl Microbiol 69:769–797

    CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    Article  CAS  Google Scholar 

  • Guo JB, Dai XJ, Xu WZ, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  Google Scholar 

  • Heinrich-Salmeron A, Cordi A, Brochier-Armanet C, Halter D, Pagnout C, Abbaszadeh Fard E, Montaut D, Seby F, Bertin PN, Bauda P, Arsene Ploetze F (2011) Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Appl Environ Microbiol 77:4685–4692

    Article  CAS  Google Scholar 

  • Hoshino YT, Morimoto S (2008) Comparison of 18SrDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction denaturing gradient gel electrophoresis. Soil Sci Plant Nutr 54:701–710

    Article  CAS  Google Scholar 

  • Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    Article  CAS  Google Scholar 

  • Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314

    Article  CAS  Google Scholar 

  • Huysmans KD, Frankenberger WT (1991) Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water. Sci Total Environ 105:13–28

    Article  CAS  Google Scholar 

  • Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943

    Article  CAS  Google Scholar 

  • Karagas MR, Tosteson TD, Blum J, Morris JS, Baron JA, Klaue B (1998) Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Environ Health Perspect 106:1047–1050

    Article  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for theremoval of arsenic from ground waters. Water Res 38:17–26

    Article  CAS  Google Scholar 

  • Kim YJ, Chang KS, Lee MR, Kim JH, Lee CE, Jeon YJ, Choi JS, Shin HS, Hwang SB (2005) Expression of tobacco cDNA encoding phytochelatin synthase promotes tolerance to and accumulation of Cd and As in Saccharomyces cerevisiae. J Plant Biol 48:440–447

    Article  CAS  Google Scholar 

  • Kirk MF, Holm TR, Park J, Jin Q, Sanford RA, Fouke BW, Bethke CM (2004) Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 32:953–956

    Article  Google Scholar 

  • Krumov N, Oder S, Perner-Nochta I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132:481–486

    Article  CAS  Google Scholar 

  • Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC, Stolz JF, Culbertson CW, Miller LG, Oremland RS (2008) Arsenic(III) fuels an oxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967–970

    Article  CAS  Google Scholar 

  • Lett MC, Muller D, Lievremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 194:207–208

    Article  CAS  Google Scholar 

  • Liao VHC, Chu YJ, Su YC, Hsiao SY, Wei CC, Liu CW, Liao CM, Shen WC, Chang FJ (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29

    Article  CAS  Google Scholar 

  • Lievremont D, N’Negue MA, Behra P, Lett MC (2003) Biological oxidation of arsenite: batch reactor experiments in presence of kutnahorite and chabazite. Chemosphere 51:419–428

    Article  CAS  Google Scholar 

  • Lievremont D, Bertin PN, Lett MC (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and bio treatment processes. Biochimie 91:1229–1237

    Article  CAS  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int Article ID: 503784

    Google Scholar 

  • Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci U S A 103:15617–15622

    Article  CAS  Google Scholar 

  • Liu ZJ, Boles E, Rosen BP (2004) Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. J Biol Chem 279:17312–17318

    Article  CAS  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550

    Article  CAS  Google Scholar 

  • Lizama AK, Fletcher TD, Sun G (2011) Removal processes for arsenic in constructed wetlands. Chemosphere 84:1032–1043

    Article  CAS  Google Scholar 

  • Macy JM, Santini JM, Pauling BV, O'Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57

    Article  CAS  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  Google Scholar 

  • Mateos LM, Rosen BP, Messens J (2012) The arsenic stress defense mechanism of Corynebaterium glutamicum revealed. Understanding the Geological and Medical Interface of Arsenic-AS 2012. In: Proceeding of the fourth international congress on arsenic in the environment, Cairns, Australia, pp 209–210

    Google Scholar 

  • Messens J, Silver S (2006) Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol 362:1–17

    Article  CAS  Google Scholar 

  • Mokashi SA, Paknikar KM (2002) Arsenic (III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Lett Appl Microbiol 34:258–262

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP (1998) Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett 168:127–136

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    Article  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant b-proteobacterium. J Bacteriol 185:135–141

    Article  CAS  Google Scholar 

  • Newman DK, Ahmann D, Morel FM (1998) A brief review of microbial arsenate respiration. Geomicrobiol J 15:255–268

    Article  CAS  Google Scholar 

  • Ordonez OF, Flores MR, Dib JR, Paz A, Farías ME (2009) Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation. Microb Ecol 58:461–473

    Article  Google Scholar 

  • Ordonez OF, Lanzarotti EO, Kurth DG, Cortez N, Farías ME, Turjanski AG (2015) Genome comparison of two Exiguo bacterium strains from high altitude Andean lakes with different arsenic resistance: identification and 3D modeling of the Acr3 efflux pump. Front Environ Sci 3:50

    Article  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    Article  CAS  Google Scholar 

  • Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A, Pattison J (1999) Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta Rev Biomembr 1422:255–272

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang GJ, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethioninemethyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  CAS  Google Scholar 

  • Rahman S, Ki-Hyun K, Saha SK, Swaraz AM, Paul DK (2014) Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms. J Environ Manag 134:175–185

    Article  CAS  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jana J, Ghosh SD, Olsson B, Mandal A (2015) Data in support of the comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Data Brief 5:579–585

    Article  Google Scholar 

  • Ramasamy K, Kamaludeen, Banu SP (2006) Bioremediation of metals: microbial processes and techniques. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer-Verlag, Berlin, pp 173–187

    Google Scholar 

  • Richey C, Chovanec P, Hoeft SE, Oremland RS, Basu P, Stolz JF (2009) Respiratory arsenate reductase as a bidirectional enzyme. Biochem Biophys Res Commun 382:298–302

    Article  CAS  Google Scholar 

  • Rodriguez-Freire L, Moore SE, Sierra-Alvarez R, Root RA, Jon C, James A (2016) Field arsenic remediation by formation of arsenic sulfide minerals in a continuous anaerobic bioreactor. Biotechnol Bioeng 113:522–530

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 5:86–92

    Article  Google Scholar 

  • Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367

    Article  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  CAS  Google Scholar 

  • Sanyal SK, Jahan MT, Chakrabarty RP, Hoque S, Anwar MH, Sultana M (2016) Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express 6:21

    Article  CAS  Google Scholar 

  • Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    Article  CAS  Google Scholar 

  • SenGupta B, Chatterjee S, Rott U, Kauffman H, Bandopadhyay A, DeGroot W, Nag NK, Carbonell-Barrachina AA, Mukherjee S (2009) A simple chemical-free arsenic removal method for community water supply—a case study from West Bengal, India. Environ Pollut 157:3351–3353

    Article  CAS  Google Scholar 

  • Shafiq M, Jamil S (2012) Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. J Hazard Mater 237:186–193

    Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  Google Scholar 

  • Simeonova DD, Micheva K, Muller DAE, Lagarde F, Lett MC, Groudeva VI, Lievremont D (2005) Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain. Biotechnol Bioeng 91:441–446

    Article  CAS  Google Scholar 

  • Singh AL, Sarma PN (2010) Removal of arsenic(III) from waste water using Lactobacillus acidophilus. Biorem J 14:92–97

    Article  CAS  Google Scholar 

  • Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290

    Article  CAS  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a 1st line of defense against cadmium toxicity. FEBS Lett 1:220–223

    CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Sukhacheva MV, Muyzer G (2012) Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligatory anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes. Extremophiles 16:597–605

    Article  CAS  Google Scholar 

  • Sousa T, Branco R, Piedade AP, Morais PV (2015) Hyper accumulation of arsenic in mutants of Ochrobactrum tritici silenced for arsenite efflux pumps. PLoS One 10:e0131317

    Article  CAS  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  Google Scholar 

  • Srivastava S, Verma PC, Singh A, Mishra M, Singh N, Sharma N, Singh N (2012) Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal. Appl Microbiol Biotechnol 95:1275–1291

    Article  CAS  Google Scholar 

  • Stepniewska Z, Kuzniar A (2013) Endophytic microorganisms—promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbe 5:53–59

    Google Scholar 

  • Sun W, Sierra-Alvarez R, Hsu I, Rowlette P, Field JA (2010) Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnol Bioeng 105:909–917

    Article  CAS  Google Scholar 

  • Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Yoshiro O, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127:434–442

    Article  CAS  Google Scholar 

  • Tiwari S, Sarangi BK, Thul ST (2016) Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application. J Environ Manage 180:359–365

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Matthuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trend Biotechnol 25:158–165

    Article  CAS  Google Scholar 

  • Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667

    Article  CAS  Google Scholar 

  • Upadhyaya G, Jackson J, Clancy TM, Hyun SP, Brown J, Hayes KF, Raskin L (2010) Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system. Water Res 44:4958–4969

    Article  CAS  Google Scholar 

  • Vala AK (2010) Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Bioresour Technol 101:2565–2567

    Article  CAS  Google Scholar 

  • Vala AK, Sutariya V (2012) Trivalent arsenic tolerance and accumulation in two facultative marine fungi. Jundishapur J Microbiol 5:542–545

    Article  Google Scholar 

  • Valls M, Lorenzo VD (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  Google Scholar 

  • vanden Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656:148–155

    Article  CAS  Google Scholar 

  • World Health Organization (2001) Environmental health criteria 224: arsenic and arsenic compounds. WHO, Geneva, pp 1–108

    Google Scholar 

  • Wunschmann J, Beck A, Meyer L, Letzel T, Grill E, Lendzian KJ (2007) Phytochelatins are synthesized by two vacuolar serine carboxypeptidases in Saccharomyces cerevisiae. FEBS Lett 581:1681–1687

    Article  CAS  Google Scholar 

  • Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066

    Article  CAS  Google Scholar 

  • Wysocki R, Chery CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamas MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401

    Article  CAS  Google Scholar 

  • Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118:1–9

    Article  CAS  Google Scholar 

  • Yuan CG, Lu XF, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethioninemethyltransferase gene. Environ Sci Technol 42:3201–3206

    Article  CAS  Google Scholar 

  • Zargar K, Hoeft S, Oremland R, Saltikov CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite oxidizing bacterium Alkalilimnicola ehrlichiistrain MLHE-1. J Bacteriol 192:3755–3762

    Google Scholar 

  • Zarger K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S, Oremland RS, Stolz J, Saltikov CW (2012) ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductase. Environ Microbiol 14:1635–1645

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2008) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhu Ling J, Guan DX, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere 113:9–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Directors DRL, IRS, and Principal BCC for their kind support. Further, a sincere apology is rendered to the many colleagues whose works could not be referred to in this chapter due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mitra, A., Chatterjee, S., Gupta, D.K. (2017). Potential Role of Microbes in Bioremediation of Arsenic. In: Gupta, D., Chatterjee, S. (eds) Arsenic Contamination in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-54356-7_10

Download citation

Publish with us

Policies and ethics