Skip to main content

Sensitivity of OGSE ActiveAx to Microstructural Dimensions on a Clinical Scanner

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2016)

Abstract

Axon diameter can play a key role in the function and performance of nerve pathways of the central and peripheral nervous system. Previously, a number of techniques to measure axon diameter using diffusion MR I have been proposed, majority of which uses single diffusion encoding (SDE) spin-echo sequence. However, recent theoretical research suggests that low-frequency oscillating gradient spin echo (OGSE ) offers benefits over SDE for imaging diameters when fibres are of unknown orientation. Furthermore, it suggests that resolution limit for clinical scanners (gradient strength of 60–80 mT/m) is ≈ 6 μm. Here we investigate the sensitivity of OGSE to fibre diameters experimentally on a clinical scanner, using microcapillaries of unknown orientation. We use the orientationally invariant OGSE ActiveAx method to image microcapillaries with diameters of 5, 10 or 20 μm. As predicted by theory, we find that 5 μm diameters are undistinguishable from zero. Furthermore, we find accurate and precise estimates for 10 and 20 μm. Finally, we find that low frequency oscillating gradient waveforms are optimal for accurate diameter estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritchie, J.M.: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proc. R. Soc. Lond. Ser. B 217 (1206), 29–35 (1982)

    Article  Google Scholar 

  2. Hildebrand, C., Remahl, S., Persson, H., Bjartmar, C.: Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40, 319–384 (1993)

    Article  Google Scholar 

  3. Marner, L., Nyengaard, J.R., Tang, Y.Y., Pakkenberg, B.: Marked loss of myelinated nerve fibers in the human brain with age. J. Comput. Neurosci. 462 (2), 144–152 (2003)

    Article  Google Scholar 

  4. Cluskey, S., Ramsden, D.B.: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol. Pathol. 54 (6), 386 (2001)

    Google Scholar 

  5. Piven, J., Bailey, J., Ranson, B.J., Arndt, S.: An MRI study of the corpus callosum in autism. Am. J. Psychiatr. 154 (8), 1051 (1997)

    Article  Google Scholar 

  6. Rice, D., Barone, S. Jr.: Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108 (Suppl 3), 511 (2000)

    Article  Google Scholar 

  7. Ong, H.H., Wehrli, F.W.: Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging. Neuroimage 51, 1360–1366 (2010)

    Article  Google Scholar 

  8. Shemesh, N., Özarslan, E., Komlosh, M.E., Basser, P.J., Cohen, Y.: From single-pulsed field gradient to double-pulsed field gradient MR: gleaning new microstructural information and developing new forms of contrast in MRI. NMR Biomed. 23, 757–780 (2010)

    Article  Google Scholar 

  9. Komlosh, M.E., Özarslan, E., Lizak, M.J., Horkayne-Szakaly, I., Freidlin, R.Z., Horkay, F., Basser, P.J.: Mapping average axon diameters in porcine spinal cord white matter and rat corpus callosum using d-PFG MRI. Neuroimage 78, 210–216 (2013)

    Article  Google Scholar 

  10. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59 (6), 1347–1354 (2008)

    Article  Google Scholar 

  11. Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52, 1374–1389 (2010)

    Article  Google Scholar 

  12. Drobnjak, I., Zhang, H., Ianus, A., Kaden, E., Alexander, D.C.: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: insight from a simulation study. Magn. Reson. Med. 75 (2), 688–700 (2016)

    Article  Google Scholar 

  13. Li, H., Jiang, X., Xie, J., Gore, J.C., Xu, J.: Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI. Magn. Reson. Med. (2016)

    Google Scholar 

  14. Siow, B., Drobnjak, I., Chatterjee, A., Lythgoe, M.F., Alexander, D.C.: Estimation of pore size in a microstructure phantom using the optimised gradient waveform diffusion weighted NMR sequence. J. Magn. Reson. 214, 51–60 (2012)

    Article  Google Scholar 

  15. Parsons, E.C., Does, M.D., Gore, J.C.: Temporal diffusion spectroscopy: theory and implementation in restricted systems using oscillating gradients. J. Magn. Reson. 55, 75–84 (2006)

    Article  Google Scholar 

  16. Callaghan, P.T.: Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR, 1st edn. Oxford University Press, Oxford (2011)

    Book  Google Scholar 

  17. Li, H., Gore, J.C., Xu, J.: Fast and robust measurement of microstructural dimensions using temporal diffusion spectroscopy. J. Magn. Reson. 242, 4–9 (2014)

    Article  Google Scholar 

  18. Nilsson, M., Lasic, S., Topgaard, D., Westin, C.F.: Estimating the axon diameter from intra-axonal water diffusion with arbitrary gradient waveforms: resolution limit in parallel and dispersed fibers. In: ISMRM Annual Meeting, vol. 24, p. 663 (2016). ISMRM Abstract

    Google Scholar 

  19. Drobnjak, I., Siow, B., Alexander, D.C.: Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 206, 41–51 (2010)

    Article  Google Scholar 

  20. Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52 (5), 965–978 (2004)

    Article  Google Scholar 

  21. Murday, J.S., Cotts, R.M.: Self-diffusion coefficient of liquid lithium. J. Chem. Phys. 48 (11), 4938–4945 (1968)

    Article  Google Scholar 

  22. Ianus, A., Siow, B., Drobnjak, I., Zhang, H., Alexander, D.C.: Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI. J. Magn. Reson. 227, 25–34 (2013)

    Article  Google Scholar 

  23. Drobnjak, I., Cruz, G., Alexander, D.C.: Optimising oscillating waveform-shape for pore size sensitivity in diffusion-weighted MR. Microporous Mesoporous Mater. 178, 11–14 (2013)

    Article  Google Scholar 

  24. Jenkinson, M., Bannister, P., Brady, J.M., Smith, S.M.: Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17 (2), 825–841 (2002)

    Article  Google Scholar 

  25. Holz, M., Heila, S.R., Saccob, A.: Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2, 4740–4742 (2000)

    Article  Google Scholar 

  26. Shemesh, N., Alvarez, G.A., Frydman, L.: Size distribution imaging by non-uniform oscillating-gradient spin echo (NOGSE) MRI. PLoS One 10 (7), e0133201 (2015)

    Article  Google Scholar 

  27. Komlosh, M.E., Özarslan, E., Lizak, M.J., Horkay, F., Schram, V., Shemesh, N., Cohen, Y., Basser, P.J.: Pore diameter mapping using double pulsed-field gradient MRI and its validation using a novel glass capillary array phantom. J. Magn. Reson. 208, 128–135 (2011)

    Article  Google Scholar 

  28. Hubbard, P.L., Zhou, F.L., Eichhorn, S.J., Parker, G.J.M.: Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magn. Reson. Med. 73, 299–305 (2015)

    Article  Google Scholar 

  29. Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003)

    Article  Google Scholar 

  30. Schroder, J.M., Bohl, J., Brodda, K.: Changes of the ratio between myelin thickness and axon diameter in the human developing sural nerve. J. Neurosurg. Sci. 76 (5), 114–120 (1988)

    Google Scholar 

  31. Sanders, F.K.: The thickness of the myelin sheaths of normal and regenerating peripheral nerve fibres. Proc. R. Soc. Lond. Ser. B 135 (880), 323–357 (1948)

    Article  Google Scholar 

Download references

Acknowledgements

We thank EPSRC for funding the research studentship of Lebina Shrestha Kakkar. EPSRC grants EP/I018700/1 and EP/H046410/1 also contributed to this work. The study was undertaken at UCH and UCL, both of whom are part-funded by the Department of Health NIHR Biomedical Research Centres funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lebina S. Kakkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kakkar, L.S., Atkinson, D., Chan, R.W., Siow, B., Ianus, A., Drobnjak, I. (2017). Sensitivity of OGSE ActiveAx to Microstructural Dimensions on a Clinical Scanner. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. MICCAI 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-54130-3_7

Download citation

Publish with us

Policies and ethics