Skip to main content

Multi-Spherical Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2016)

Abstract

Effective representation of the diffusion signal’s dependence on diffusion time is a sought-after, yet still unsolved, challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this four-dimensional space—varying over gradient strength, direction and diffusion time. In particular, we provide regularization tools imposing signal sparsity and signal smoothness to drastically reduce the number of measurements we need to probe the properties of this multi-spherical space. We illustrate a novel application of our approach, which is the estimation of time-dependent q -space indices , on both synthetic data generated using Monte-Carlo simulations and in vivo data acquired from a C57Bl6 wild-type mouse. In both cases, we find that our regularization approach stabilizes the signal fit and index estimation as we remove samples, which may bring multi-spherical diffusion MRI within the reach of clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novikov, D.S., et al.: Revealing mesoscopic structural universality with diffusion. Proc. Natl. Acad. Sci. 111 (14), 5088–5093 (2014)

    Article  Google Scholar 

  2. Burcaw, L.M., et al.: Mesoscopic structure of neuronal tracts from time-dependent diffusion. NeuroImage 114, 18–37 (2015)

    Article  Google Scholar 

  3. De Santis, S., et al.: Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. NeuroImage 130, 91–103 (2016)

    Article  Google Scholar 

  4. Fick, R., et al.: A unifying framework for spatial and temporal diffusion in diffusion MRI. In: Information Processing in Medical Imaging. Springer International Publishing, Cham (2015)

    Book  Google Scholar 

  5. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25 (2), 21–30 (2008)

    Article  Google Scholar 

  6. Candès, E.J., et al.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52 (2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Paquette, M., et al.: Comparison of sampling strategies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging. Magn. Reson. Med. 73 (1), 401–416 (2015)

    Article  MathSciNet  Google Scholar 

  8. Merlet, S.L., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Image Anal. 17 (5), 556–572 (2013)

    Google Scholar 

  9. Rathi, Y., et al.: Multi-shell diffusion signal recovery from sparse measurements. Med. Image Anal. 18 (7), 1143–1156 (2014)

    Article  Google Scholar 

  10. Bilgic, B., et al.: Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magn. Reson. Med. 68 (6), 1747–1754 (2012)

    Article  Google Scholar 

  11. Stejskal, E.O.: Use of spin echoes in a pulsed magneticfield gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43 (10), 3597–3603 (1965)

    Article  Google Scholar 

  12. Callaghan, P.T.: Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. J. Magn. Reson. Ser. A 113 (1), 53–59 (1995)

    Article  Google Scholar 

  13. Özarslan, E., et al.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)

    Article  Google Scholar 

  14. Fick, R.H.J., et al.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage 134, 365–385 (2016)

    Article  Google Scholar 

  15. Hosseinbor, A.P., et al.: Bessel fourier orientation reconstruction (BFOR): an analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)

    Article  Google Scholar 

  16. Özarslan, E., et al.: Nuclear magnetic resonance characterization of general compartment size distributions. New J. Phys. 13 (1), 015010 (2011)

    Article  Google Scholar 

  17. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17 (83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)

    Article  Google Scholar 

  19. Cook, P.A., et al.: Camino: open-source diffusion-MRI reconstruction and processing. In: 14th ISMRM, Seattle, WA, p. 2759 (2006)

    Google Scholar 

  20. Aboitiz, F., et al.: Fiber composition of the human corpus callosum. Brain Res. 598 (1), 143–153 (1992)

    Article  Google Scholar 

  21. Lamantia, A.S., Rakic, P.: Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J. Comp. Neurol. 291 (4), 520–537 (1990)

    Article  Google Scholar 

  22. Alexander, D.C., et al.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52 (4), 1374–1389 (2010)

    Article  Google Scholar 

  23. Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by ANR “MOSIFAH” under ANR-13-MONU-0009-01, the ERC under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665:CoBCoM), MAXIMS grant funded by ICM’s The Big Brain Theory Program and ANR-10-IAIHU-06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rutger H. J. Fick or Demian Wassermann .

Editor information

Editors and Affiliations

Appendix: Analytic Laplacian Regularization

Appendix: Analytic Laplacian Regularization

We provide the analytic form of the Laplacian regularization matrix in Eq. (9). As our basis is separable in q and τ, the Laplacian of our basis function Ξ i is

$$\displaystyle{ \nabla ^{2}\varXi _{ i}(\mathbf{q},\tau,u_{s},u_{t}) = \left (\nabla _{\mathbf{q}}^{2}\varPhi _{ i}(\mathbf{q},u_{s})\right )T_{i}(\tau,u_{t}) +\varPhi _{i}(\mathbf{q},u_{s})\left (\nabla _{\tau }^{2}T_{ i}(\tau,u_{t})\right ) }$$
(12)

with ∇ q 2 and ∇ τ 2 the Laplacian to either q or τ. We then rewrite Eq. (9) as

$$\displaystyle{ \begin{array}{rl} \mathbf{U}_{ik}& =\int _{\mathbb{R}}(\nabla _{\mathbf{q}}^{2}\varPhi _{i})(\nabla _{\mathbf{q}}^{2}\varPhi _{k})d\mathbf{q}\int _{\mathbb{R}}T_{i}T_{k}d\tau +\int _{\mathbb{R}}\varPhi _{i}\varPhi _{k}d\mathbf{q}\int _{\mathbb{R}}(\nabla _{\tau }^{2}T_{i})(\nabla _{\tau }^{2}T_{k})d\tau \\ & +\int _{\mathbb{R}}(\nabla _{\mathbf{q}}^{2}\varPhi _{i})\varPhi _{k}d\mathbf{q}\left (\int _{\mathbb{R}}T_{i}(\nabla _{\tau }^{2}T_{k})d\tau +\int _{\mathbb{R}}(\nabla _{\tau }^{2}T_{i})T_{k}d\tau \right ) \end{array} }$$
(13)

Equation (13) can be calculated to a closed form using the orthogonality of physicists’ Hermite polynomials with respect to weighting function \(e^{-x^{2} }\) on [−, ]. Let us first consider the integrals with respect to q, which all parts of the Laplacian regularization functional of the MAP basis [14]. Writing the second order derivative as a double apostrophe′ ′, the Laplacian of the spatial basis is given in terms of the 1D-SHORE functions as \(\nabla _{\mathbf{q}}^{2}\varPhi _{i} =\phi _{ n_{x}}^{{\prime\prime}}\phi _{n_{y}}\phi _{n_{z}} +\phi _{n_{x}}\phi _{n_{y}}^{{\prime\prime}}\phi _{n_{z}} +\phi _{n_{x}}\phi _{n_{y}}\phi _{n_{z}}^{{\prime\prime}}\). The integral of the product of two Laplacians therefore becomes a sum of nine terms, but can be described using the following three equations:

$$\displaystyle\begin{array}{rcl} & & \begin{array}{rl} \mathop{\mathrm{U}}\nolimits _{n}^{m}(u)& =\int _{\mathbb{R}}\phi _{n}^{{\prime\prime}}\phi _{m}^{{\prime\prime}}d\mathbf{q} = u^{3}2(-1)^{n}\pi ^{7/2}\Bigg(\delta _{n}^{m}3(2n^{2} + 2n + 1) +\delta _{ n}^{m+4}\sqrt{n!/m!} \\ & +\delta _{ n+2}^{m}(6 + 4n)\sqrt{m!/n!} +\delta _{ n+4}^{m}\sqrt{m!/n!} +\delta _{ n}^{m+2}(6 + 4m)\sqrt{n!/m!}\Bigg) \end{array} \\ & & \begin{array}{rll} \mathop{\mathrm{V}}\nolimits _{n}^{m}(u)& =\int _{\mathbb{R}}\phi _{n}^{{\prime\prime}}\phi _{m}d\mathbf{q} = u(-1)^{n+1}\pi ^{3/2}\bigg(\delta _{n}^{m}(1 + 2n)& +\delta _{ n}^{m+2}\sqrt{n(n - 1)} +\delta _{ n+2}^{m}\sqrt{m(m - 1)}\bigg) \\ \end{array}{} \\ & & \begin{array}{rl} \mathop{\mathrm{W}}\nolimits _{n}^{m}(u)& =\int _{\mathbb{R}}\phi _{n}\phi _{m}d\mathbf{q} = u^{-1}\delta _{n}^{m}(-1)^{n}/(2\pi ^{1/2}) \end{array} \\ \end{array}$$
(14)

Using the functions in Eq. (14) we define the q-dependent parts of Eq. (13):

$$\displaystyle\begin{array}{rcl} & & \begin{array}{rl} \int _{\mathbb{R}}(\nabla _{\mathbf{q}}^{2}\varPhi _{i})(\nabla _{\mathbf{q}}^{2}\varPhi _{k})d\mathbf{q}& = \frac{u_{x}^{3}} {u_{y}u_{z}}\mathop{\mathrm{U}}\nolimits _{ x_{i}}^{x_{k}}\mathop{\mathrm{W}}\nolimits _{ y_{ i}}^{y_{k}}\mathop{\mathrm{W}}\nolimits _{ z_{ i}}^{z_{k}} + 2\frac{u_{x}u_{y}} {u_{z}} \mathop{\mathrm{V}}\nolimits _{ x_{i}}^{x_{k}}\mathop{\mathrm{V}}\nolimits _{ y_{ i}}^{y_{k}}\mathop{\mathrm{W}}\nolimits _{ z_{ i}}^{z_{k}} + \frac{u_{y}^{3}} {u_{z}u_{x}}\mathop{\mathrm{U}}\nolimits _{ y_{i}}^{y_{k}}\mathop{\mathrm{W}}\nolimits _{ z_{ i}}^{z_{k}}\mathop{\mathrm{W}}\nolimits _{ x_{ i}}^{x_{k}} \\ & + 2\frac{u_{y}u_{z}} {u_{x}} \mathop{\mathrm{V}}\nolimits _{ y_{i}}^{y_{k}}\mathop{\mathrm{V}}\nolimits _{ z_{ i}}^{z_{k}}\mathop{\mathrm{W}}\nolimits _{ x_{ i}}^{x_{k}} + \frac{u_{z}^{3}} {u_{x}u_{y}}\mathop{\mathrm{U}}\nolimits _{ z_{i}}^{z_{k}}\mathop{\mathrm{W}}\nolimits _{ x_{ i}}^{x_{k}}\mathop{\mathrm{W}}\nolimits _{ y_{ i}}^{y_{k}} + 2\frac{u_{x}u_{z}} {u_{y}} \mathop{\mathrm{V}}\nolimits _{ x_{i}}^{x_{k}}\mathop{\mathrm{V}}\nolimits _{ z_{ i}}^{z_{k}}\mathop{\mathrm{W}}\nolimits _{ y_{ i}}^{y_{k}} \end{array} {}\\ & & \begin{array}{rl} \int _{\mathbb{R}}(\nabla _{\mathbf{q}}^{2}\varPhi _{i})(\varPhi _{k})d\mathbf{q}& = \frac{u_{x}} {u_{y}u_{z}}\mathop{\mathrm{V}}\nolimits _{ x_{i}}^{x_{k}}\mathop{\mathrm{W}}\nolimits _{ y_{ i}}^{y_{k}}\mathop{\mathrm{W}}\nolimits _{ z_{ i}}^{z_{k}} + \frac{u_{y}} {u_{x}u_{z}}\mathop{\mathrm{V}}\nolimits _{ x_{i}}^{x_{k}}\mathop{\mathrm{W}}\nolimits _{ y_{ i}}^{y_{k}}\mathop{\mathrm{W}}\nolimits _{ z_{ i}}^{z_{k}} + \frac{u_{z}} {u_{x}u_{y}}\mathop{\mathrm{V}}\nolimits _{ x_{i}}^{x_{k}}\mathop{\mathrm{W}}\nolimits _{ y_{ i}}^{y_{k}}\mathop{\mathrm{W}}\nolimits _{ z_{ i}}^{z_{k}} \end{array} {}\\ & & \begin{array}{rl} \int _{\mathbb{R}}\varPhi _{i}\varPhi _{k}d\mathbf{q}& = \frac{1} {u_{x}u_{y}u_{z}}\mathop{\mathrm{W}}\nolimits _{ x_{i}}^{x_{k}}\mathop{\mathrm{W}}\nolimits _{ y_{ i}}^{y_{k}}\mathop{\mathrm{W}}\nolimits _{ z_{ i}}^{z_{k}} \end{array} {}\\ \end{array}$$

For terms with τ, we denote the operator \(M_{x_{1}}^{x_{2}} =\mathrm{ min}(x_{1},x_{2})\) for the minimal value of x 1, x 2 and H x the Heaviside step function with H x  = 1 iff x ≥ 0.

$$\displaystyle\begin{array}{rcl} & & \begin{array}{rl} \int _{\mathbb{R}}(\nabla _{\tau }^{2}T_{i})(\nabla _{\tau }^{2}T_{k})d\tau & =\Bigg (\frac{1} {4}\vert o(i) - o(k)\vert + \frac{1} {16}\delta _{o(i)}^{o(k)} + M_{o(i)}^{o(k)} \\ & + \sum _{p=1}^{M_{o(i)}^{o(k)}+1}(o(i) - p)(o(k) - p)H_{ M_{o(i)}^{o(k)}-p} + H_{o(i)-1}H_{o(k)-1}\bigg(o(i) + o(k) - 2 \\ & + \sum _{p=0}^{M_{o(i)-1}^{o(k)-2} }p + \sum _{p=0}^{M_{o(i)-2}^{o(k)-1} }p + M_{o(i)-1}^{o(k)-1}\left (\vert o(i) - o(k)\vert - 1\right )H_{\left (\vert o(i)-o(k)\vert -1\right )}\bigg)\Bigg) \end{array} {}\\ & & \begin{array}{rl} \left (\int _{\mathbb{R}}T_{i}(\nabla _{\tau }^{2}T_{k})d\tau +\int _{\mathbb{R}}(\nabla _{\tau }^{2}T_{i})T_{k}d\tau \right ) = u_{t}\left (\frac{1} {2}\delta _{o(i)}^{o(k)} + (1 -\delta _{o(i)}^{o(k)}) \cdot \vert o(i) - o(k)\vert \right ) \end{array} {}\\ & & \begin{array}{rl} \int _{\mathbb{R}}T_{i}T_{k}d\tau = 1/u_{t}\delta _{o(k)}^{o(i)} \end{array} {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fick, R.H.J. et al. (2017). Multi-Spherical Diffusion MRI: Exploring Diffusion Time Using Signal Sparsity. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. MICCAI 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-54130-3_6

Download citation

Publish with us

Policies and ethics