Skip to main content

Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2016)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Noise in diffusion-weighted (DW) images increases the complexity of quantitative analysis and decreases the reliability of inferences. Hence, to improve analysis, it is often desirable to remove noise and at the same time preserve relevant image features. In this paper, we propose a tight wavelet frame based approach for edge-preserving denoising of DW images. Our approach (1) employs the unitary extension principle (UEP) to generate frames that are discrete analogues to differential operators of various orders; (2) introduces a very efficient method for solving an 0 denoising problem that involves only thresholding and solving a trivial inverse problem; and (3) groups DW images acquired with neighboring gradient directions for collaborative denoising. Experiments using synthetic data with noncentral chi noise and real data with repeated scans confirm that our method yields superior performance compared with denoising using state-of-the-art methods such as non-local means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yap, P.T., Fan, Y., Chen, Y., Gilmore, J., Lin, W., Shen, D.: Development trends of white matter connectivity in the first years of life. PLoS ONE 6 (9), e24678 (2011)

    Article  Google Scholar 

  2. Wee, C.Y., Yap, P.T., Li, W., Denny, K., Brownyke, J., Potter, G., Welsh-Bohmer, K., Wang, L., Shen, D.: Enriched white-matter connectivity networks for accurate identification of MCI patients. NeuroImage 54 (3), 1812–1822 (2011)

    Article  Google Scholar 

  3. Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Identification of MCI individuals using structural and functional connectivity networks. NeuroImage 59 (3), 2045–2056 (2012)

    Article  Google Scholar 

  4. Wee, C.Y., Wang, L., Shi, F., Yap, P.T., Shen, D.: Diagnosis of autism spectrum disorders using regional and interregional morphological features. Hum. Brain Mapp. 35 (7), 3414–3430 (2014)

    Article  Google Scholar 

  5. Jin, Y., Wee, C.Y., Shi, F., Thung, K.H., Yap, P.T., Shen, D.: Identification of infants at high-risk for autism spectrum disorder using multi-parameter multi-scale white matter connectivity networks. Hum. Brain Mapp. 36 (12), 4880–4896 (2015)

    Article  Google Scholar 

  6. Ring, W.: Structural properties of solutions to total variation regularization problems. Mathematical Modelling and Numerical Analysis 34, 799–810 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52 (2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, R.H., Chan, T.F., Shen, L., Shen, Z.: Wavelet algorithms for high-resolution image reconstruction. SIAM J. Sci. Comput. 24 (4), 1408–1432 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, Y., Dong, B., Lu, Z.: 0 minimization for wavelet frame based image restoration. Math. Comput. 82, 995–1015 (2013)

    Google Scholar 

  10. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic, New York (2008)

    MATH  Google Scholar 

  11. Ron, A., Shen, Z.: Affine systems in \(l_{2}(\mathbb{R}^{d})\): the analysis of the analysis operator. J. Funct. Anal. 148 (2), 408–447 (1997)

    Article  MathSciNet  Google Scholar 

  12. Dong, B., Shen, Z.: MRA-based wavelet frames and applications. In: IAS Lecture Notes Series. Summer Program on “The Mathematics of Image Processing”. Park City Mathematics Institute, Salt Lake City (2010)

    Google Scholar 

  13. Jacob, L., Obozinski, G., Vert, J.P.: Group lasso with overlap and graph lasso. In: International Conference on Machine Learning (2009)

    Book  Google Scholar 

  14. Lu, Z., Zhang, Y.: Sparse approximation via penalty decomposition methods. SIAM J. Optim. 23 (4), 2448–2478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schwartzman, A., Dougherty, R.F., Taylor, J.E.: False discovery rate analysis of brain diffusion direction maps. Ann. Appl. Stat. 2 (1), 153–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koay, C.G., Özarslan, E., Basser, P.J.: A signal transformational framework for breaking the noise floor and its applications in MRI. J. Magn. Reson. 197 (2), 108–119 (2009)

    Article  Google Scholar 

  17. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27 (4), 425–441 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants (NS093842, EB006733, EB009634, AG041721, MH100217, and AA012388) and Hunan Provincial Education Department grant (15A066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, J., Chen, G., Zhang, Y., Dong, B., Shen, D., Yap, PT. (2017). Denoising Diffusion-Weighted Images Using Grouped Iterative Hard Thresholding of Multi-Channel Framelets. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. MICCAI 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-54130-3_4

Download citation

Publish with us

Policies and ethics