Skip to main content

Noise Floor Removal via Phase Correction of Complex Diffusion-Weighted Images: Influence on DTI and q-Space Metrics

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2016)

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The non-Gaussian noise distribution in magnitude Diffusion-Weighted Images (DWIs) can severely affect the estimation and reconstruction of the true diffusion signal. As a consequence, also the estimated diffusion metrics can be biased. We study the effect of phase correction, a procedure that re-establishes the Gaussianity of the noise distribution in DWIs by taking into account the corresponding phase images. We quantify the debiasing effects of phase correction in terms of diffusion signal estimation and calculated metrics. We perform in silico experiments based on a MGH Human Connectome Project dataset and on a digital phantom, accounting for different acquisition schemes, diffusion-weightings, signal to noise ratios, and for metrics based on Diffusion Tensor Imaging and on Mean Apparent Propagator Magnetic Resonance Imaging, i.e. q-space metrics. We show that phase correction is still a challenge, but also an effective tool to debias the estimation of diffusion signal and metrics from DWIs, especially at high b-values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://hardi.epfl.ch/static/events/2013_ISBI/,https://github.com/ecaruyer/phantomas/blob/master/examples/isbi_challenge_2013.txt.

References

  1. Jones, D.K., Basser, P.J.: Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data. Magn. Reson. Med. 52 (5), 979–993 (2004)

    Article  Google Scholar 

  2. Aja-Fernández, S., Tristán-Vega, A.: A review on statistical noise models for magnetic resonance imaging. LPI, ETSI Telecomunicacion, Universidad de Valladolid, Technical Report (2013)

    Google Scholar 

  3. Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)

    Article  Google Scholar 

  4. Alexander, D.C.: A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn. Reson. Med. 60 (2), 439–448 (2008)

    Article  Google Scholar 

  5. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61 (4), 1000–1016 (2012)

    Article  Google Scholar 

  6. Bernstein, M.A., Thomasson, D.M., Perman, W.H.: Improved detectability in low signal-to-noise ratio magnetic resonance images by means of a phase-corrected real reconstruction. Med. Phys. 16 (5), 813–817 (1989)

    Article  Google Scholar 

  7. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66 (1), 259–267 (1994)

    Article  Google Scholar 

  8. Pizzolato, M., Ghosh, A., Boutelier, T., Deriche, R.: Magnitude and complex based diffusion signal reconstruction. In: CDMRI, pp. 127–140 (2014)

    Google Scholar 

  9. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51 (5), 924–937 (2004)

    Article  Google Scholar 

  10. Pizzolato, M., Wassermann, D., Boutelier, T., Deriche, R.: Exploiting the phase in diffusion MRI for microstructure recovery: towards axonal tortuosity via asymmetric diffusion processes. In: MICCAI (2015)

    Google Scholar 

  11. Pizzolato, M., Wassermann, D., Duval, T., Campbell, J.S., Boutelier, T., Cohen-Adad, J., Deriche, R.: A temperature phantom to probe the ensemble average propagator asymmetry: an in-silico study. In: CDMRI, pp. 183–194 (2016)

    Google Scholar 

  12. Prah, D.E., Paulson, E.S., Nencka, A.S., Schmainda, K.M.: A simple method for rectified noise floor suppression: phase-corrected real data reconstruction with application to diffusion-weighted imaging. Magn. Reson. Med. 64 (2), 418–429 (2010)

    Google Scholar 

  13. Sprenger, T., Sperl, J.I., Fernandez, B., Haase, A., Menzel, M.I.: Real valued diffusion-weighted imaging using decorrelated phase filtering. Magn. Reson. Med. (2016). doi:10.1002/mrm.26138

    Google Scholar 

  14. Eichner, C., Cauley, S.F., Cohen-Adad, J., Möller, H.E., Turner, R., Setsompop, K., Wald, L.L.: Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. NeuroImage 122, 373–384 (2015)

    Article  Google Scholar 

  15. Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.-C., Thiran J.-P., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: ISMRM14 (2014)

    Google Scholar 

  16. Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn. Reson. Med. 69 (6), 1534–1540 (2013)

    Article  Google Scholar 

  17. Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage 134, 365–385 (2016)

    Article  Google Scholar 

  18. Hellinger, E.: Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. J Reine Angew. Math. 136, 210–271 (1909)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Data for this project was provided by the MGH-USC Human Connectome Project. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665: CoBCoM).

Marco Pizzolato expresses his thanks to Olea Medical and the Provence-Alpes-Côte d’Azur (PACA) Regional Council for providing grant and support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pizzolato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pizzolato, M., Fick, R., Boutelier, T., Deriche, R. (2017). Noise Floor Removal via Phase Correction of Complex Diffusion-Weighted Images: Influence on DTI and q-Space Metrics. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds) Computational Diffusion MRI. MICCAI 2016. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-54130-3_2

Download citation

Publish with us

Policies and ethics