Skip to main content

Markers and Immunoprofile of Breast Tumors

  • Chapter
  • First Online:
  • 2799 Accesses

Abstract

Normal breast tissue comprises mesenchymal and epithelial components, which in their turn includes ductal and acinar (lobular) and myoepithelial components with each cell type having its characteristic immunoprofile. The immunoprofile of breast tumors depends on the origin of neoplastic cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87:905–31.

    Article  CAS  PubMed  Google Scholar 

  2. Tuffaha M. Immunohistochmical and molecular approach in tumor diagnosis and detection of minimal residual cancer disease. In:Phenotypic and genotypic diagnosis of malignancies. Weinheim: Wiley-VCH-Verlag; 2008.

    Chapter  Google Scholar 

  3. Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 1987;3(3):138–40.

    Google Scholar 

  4. Remmele W, Schicketanz KH. Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol Res Pract. 1993;189(8):862–6.

    Article  CAS  PubMed  Google Scholar 

  5. Jr McCarty KS, Miller LS, Cox EB, et al. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med. 1985;109(8):716–21.

    Google Scholar 

  6. Yang M, Nonaka D. A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol. 2010;23:654–61.

    Article  CAS  PubMed  Google Scholar 

  7. Miettinen M, McCue PA, Sarlomo-Rikala M, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gonzalez RS, Wang J, Kraus T, et al. GATA-3 expression in male and female breast cancers: comparison of clinicopathologic parameters and prognostic relevance. Hum Pathol. 2013;44(6):1065–70.

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Shi J, Wilkerson ML, Fan L. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues. A useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012 Jul;138(1):57–64.

    Article  PubMed  Google Scholar 

  10. Schwartz LE, Begum S, Westra WH, Bishop JA. GATA3 immunohistochemical expression in salivary gland neoplasms. Head Neck Pathol. 2013;7(4):311–5.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ordonez NG, Sahin AA. Diagnostic utility of immunohistochemistry in distinguishing between epithelioid pleural mesothelioma and breast carcinomas. Hum Pathol. 2014;45(7):1529–40.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Spaulding B, Sienko A, et al. Mammaglobin, a valuable diagnostic marker for metastatic breast cancer. Int J Exp Pathol. 2009;2:384–9.

    CAS  Google Scholar 

  13. Watson MA, Dintzis S, Darrow CM, et al. Mammaglobin expression in primary, metastatic and occult breast cancer. Cancer Res. 1999;59:3028–31.

    CAS  PubMed  Google Scholar 

  14. Sasaki E, Tsunoda N, Hatanaka Y, et al. Breast-specific expression of MGB1/mammaglobin: an examination of 480 tumors from various organs and clinicopathological analysis of MGB1-positive breast cancers. Mod Pathol. 2007;20:208–14.

    Article  CAS  PubMed  Google Scholar 

  15. Loos S, Schulz KD, Hackenberg R. Regulation of GCFP-15 expression in human mammary cancer cells. Int J Mol Med. 1999;4:135–40.

    CAS  PubMed  Google Scholar 

  16. Viacava P, Naccarato AG, Bevilacqua G. Spectrum of GCDFP-15 expression in human fetal and adult normal tissues. Virchows Arch. 1998;432:255–60.

    Article  CAS  PubMed  Google Scholar 

  17. Woodart AH, Yu J, Dabbs DJ, et al. NY-BR-1 and PAX8 immunoreactivity in breast, gynecologic tract, and other CK7+ carcinomas: potential use for determining site of origin. Am J Clin Pathol. 2011;136(3):428–35.

    Article  Google Scholar 

  18. English DP, Roque DM, Santin AD. HER2 expression beyong breast cancer: therapeutic implications for gynecologic malignancies. Mol Diag Ther. 2013;17(2):85–99.

    Article  CAS  Google Scholar 

  19. Singhai R, Patil VW, Jaiswal SR, et al. E-Cadherin as a diagnostic biomarker in breast cancer. North Am Med Sci. 2011;3(5):227–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tuffaha, M.S.A., Guski, H., Kristiansen, G. (2018). Markers and Immunoprofile of Breast Tumors. In: Immunohistochemistry in Tumor Diagnostics. Springer, Cham. https://doi.org/10.1007/978-3-319-53577-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53577-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53576-0

  • Online ISBN: 978-3-319-53577-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics