Skip to main content

Experimental Validation of Robust Chatter Control for High-Speed Milling Processes

  • Chapter
  • First Online:
Time Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 7))

Abstract

This chapter presents results on the design and experimental implementation and testing of robust controllers for the high-speed milling process for the purpose of avoiding chatter vibrations. Chatter vibrations are intimately related to the delay nature of the cutting process inherent to milling and should be avoided to ensure a high product quality. A design approach based on \(\mu \)-synthesis is used to synthesize a controller that avoids chatter vibrations in the presence of model uncertainties and while respecting key performance specifications. The experimental validation of this controller on a benchmark setup, involving a spindle system including an active magnetic bearing, shows that chatter can be robustly avoided while significantly increasing the material removal rate, i.e., the productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in this case the tooltip dynamics, which are of interest for calculating the SLD, cannot be measured since the spindle is rotating.

References

  1. Abele, E., Kreis, M., Roth, M.: Electromagnetic actuator for in process non-contact identification of spindle-tool frequency respons functions. In: CIRP 2nd International Conference on High Performance Cutting, Vancouver, Canada, paper no. 103 (2006)

    Google Scholar 

  2. Abele, E., Schiffler, A., Rothenbücher, S.: System identification during milling via active magnetic bearing. Prod. Eng. Res. Dev. 1(3), 309–314 (2007)

    Article  Google Scholar 

  3. Altintas, Y.: Manufacturing Automation. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  4. de Callafon, R., de Roover, D., Van den Hof, P.: Multivariable least squares frequency domain identification using polynomial matrix fraction descriptions. In: Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, vol. 2, pp. 2030–2035 (1996)

    Google Scholar 

  5. Chen, M., Knospe, C.R.: Control approaches to the suppression of machining chatter using active magnetic bearings. IEEE Trans. Control Syst. Technol. 15(2), 220–232 (2007)

    Article  Google Scholar 

  6. van Dijk, N.: Active chatter control in high-speed milling processes. PhD thesis, Eindhoven University of Technology. http://www.dct.tue.nl/New/Wouw/phdthesisvandijk2011.pdf (2011)

  7. van Dijk, N.J.M., Doppenberg, E.J.J., Faassen, R.P.H., van de Wouw, N., Oosterling, J.A.J., Nijmeijer, H.: Automatic in-process chatter avoidance in the high-speed milling process. J. Dyn. Syst. Meas. Control 132(3), 031,006 (14 pp) (2010a)

    Google Scholar 

  8. van Dijk, N.J.M., van de Wouw, N., Doppenberg, E.J.J., Oosterling, J.A.J., Nijmeijer, H.: Chatter control in the high-speed milling process using \(\mu \)-synthesis. In: Proceedings of the American Control Conference, pp. 6121–6126, Baltimore, MD, USA (2010b)

    Google Scholar 

  9. van Dijk, N.J.M., van de Wouw, N., Doppenberg, E.J.J., Oosterling, J.A.J., Nijmeijer, H.: Robust active chatter control in the high-speed milling process. IEEE Trans. Control Syst. Technol. 20(4), 901–917 (2012)

    Article  Google Scholar 

  10. van Dijk, N.J.M., van de Wouw, N., Nijmeijer, H.: Fixed-structure robust controller design for chatter mitigation in high-speed milling. Int. J. Robust Nonlinear Control 25(17), 34953514 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Dohner, J.L., Lauffer, J.P., Hinnerichs, T.D., Shankar, N., Regelbrugge, M.E., Kwan, C.M., Xu, R., Winterbauer, B., Bridger, K.: Mitigation of chatter instabilities in milling by active structural control. J. Sound Vib. 269(1–2), 197–211 (2004)

    Article  Google Scholar 

  12. Faassen, R.: Chatter prediction and control for high-speed milling: Modelling and experiments. PhD thesis, Eindhoven University of Technology (2007)

    Google Scholar 

  13. Faassen, R.P.H., van de Wouw, N., Oosterling, J.A.J., Nijmeijer, H.: Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int. J. Mach. Tools Manuf. 43(14), 1437–1446 (2003)

    Article  Google Scholar 

  14. Faassen, R.P.H., van de Wouw, N., Nijmeijer, H., Oosterling, J.A.J.: An improved tool path model including periodic delay for chatter prediction in milling. J. Comput. Nonlinear Dyn. 2(2), 167–179 (2007)

    Article  Google Scholar 

  15. Insperger, T., Stépán, G.: Stability analysis of turning with periodic spindle speed modulation via semi-discretisation. J. Vib. Control 10, 1835–1855 (2004)

    Article  MATH  Google Scholar 

  16. Insperger, T., Stépán, G.: Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int. J. Num. Methods Eng. 61(1), 117–141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Insperger, T., Stépán, G., Bayly, P.V., Mann, B.P.: Multiple chatter frequencies in milling processes. J. Sound Vib. 262(2), 333–345 (2003)

    Article  Google Scholar 

  18. Kern, S.: Erhöhung der prozessstabilität durch aktive dämpfung von frässpindeln mittels elektromagnetischer aktoren. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany (2009)

    Google Scholar 

  19. Kern, S., Ehmann, C., Nordmann, R., Roth, M., Schiffler, A., Abele, E.: (2006) Active damping of chatter vibrations with an active magnetic bearing in a motor spindle using \(\mu \)-synthesis and an adaptive filter. In: The 8th International Conference on Motion and Vibration Control

    Google Scholar 

  20. Liu, K.J., Rouch, K.E.: Optimal passive vibration control of cutting process stability in milling. J. Mater. Process. Technol. 28(1–2), 285–294 (1991)

    Article  Google Scholar 

  21. Rantatalo, M., Aidanpä, J., Göransson, B., Norman, P.: Milling machine spindle analysis using fem and non-contact spindle excitation and response measurement. Int. J. Mach. Tools Manuf. 47(7–8), 1034–1045 (2007)

    Article  Google Scholar 

  22. Sanathanan, C., Koerner, J.: Transfer function synthesis as a ratio of two complex polynomials. IEEE Trans. Autom. Control 8(1), 56–58 (1963)

    Article  Google Scholar 

  23. Shiraishi, M., Yamanaka, K., Fujita, H.: Optimal control of chatter in turning. Int. J. Mach. Tools Manuf. 31(1), 31–43 (1991)

    Article  Google Scholar 

  24. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Chichester (2005)

    MATH  Google Scholar 

  25. Smith, S., Delio, T.: Sensor-based chatter detection and avoidance by spindle speed. J. Dyn. Syst. Meas. Control 114(3), 486–492 (1992)

    Article  Google Scholar 

  26. Soliman, E., Ismail, F.: Chatter suppression by adaptive speed modulation. Int. J. Mach. Tools Manuf. 37(3), 355–369 (1997)

    Article  Google Scholar 

  27. Stépán, G.: Modelling nonlinear regenerative effects in metal cutting. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 359(1781), 739–757 (2001). doi:10.1098/rsta.2000.0753

    Article  MATH  Google Scholar 

  28. Tarng, Y.S., Kao, J.Y., Lee, E.C.: Chatter suppression in turning operations with a tuned vibration absorber. J. Mater. Process. Technol. 105(1), 55–60 (2000)

    Article  Google Scholar 

  29. van de Wouw, N., van Dijk, N.J.M., Nijmeijer, H.: Pyragas-type feedback control for chatter mitigation in high-speed milling. In: Proceedings of the A12th IFAC Workshop on Time Delay Systems, Ann-Arbor, MI, USA (2015)

    Google Scholar 

  30. Yilmaz, A., AL-Regib, E., Ni, J.: Machine tool chatter suppression by multi-level random spindle speed variation. J. Manuf. Sci. Eng. 124(2), 208–216 (2002)

    Google Scholar 

  31. Zhang, Y., Sims, N.D.: Milling workpiece chatter avoidance using piezoelectric active damping: a feasibility study. Smart Mater. Struct. 14(6), N65–N70 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Ministry of Economic affairs within the framework of Innovation Oriented Research Programmes (IOP) Precision Technology. We also thank E. J. J. Doppenberg and J. A. J. Oosterling (TNO Science and Industry, The Netherlands) for fruitful discussion on the topic of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. van de Wouw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

van de Wouw, N., van Dijk, N.J.M., Schiffler, A., Nijmeijer, H., Abele, E. (2017). Experimental Validation of Robust Chatter Control for High-Speed Milling Processes. In: Insperger, T., Ersal, T., Orosz, G. (eds) Time Delay Systems. Advances in Delays and Dynamics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-53426-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53426-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53425-1

  • Online ISBN: 978-3-319-53426-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics