Skip to main content

Signal Transduction in Radiation Oncology

  • Living reference work entry
  • First Online:

Abstract

Processes in cells in the human body and other organisms are controlled by specific and tightly regulated events. These events are called signal transduction. Signal transduction in normal, healthy cells differs profoundly from those occurring in cancer cells. In the context of radiation oncology and medical oncology, a thorough understanding of the underlying biology and signal transduction processes of tumors is needed for improvement of therapy and diagnosis on a personalized level. In this chapter, the principles of signal transduction are described, and examples are provided to demonstrate how different tumor and normal cells are regulated and how these differences might be exploitable for molecular-based therapeutic interventions in combination with radiotherapy.

This is a preview of subscription content, log in via an institution.

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  • Aptsiauri N, Ruiz-Cabello F, Garrido F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol. 2018;51:123–32.

    Article  CAS  PubMed  Google Scholar 

  • Burtness B, Bauman JE, Galloway T. Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. Lancet Oncol [Internet]. 2013;14(8):e302–9. https://doi.org/10.1016/S1470-2045(13)70085-8. Elsevier Ltd

    Article  CAS  Google Scholar 

  • Campbell MR, Zhang H, Ziaee S, Ruiz-Saenz A, Gulizia N, Oeffinger J, et al. Effective treatment of HER2-amplified breast cancer by targeting HER3 and β1 integrin. Breast Cancer Res Treat [Internet]. 2016;155(3):431–40. http://www.ncbi.nlm.nih.gov/pubmed/26860947. [cited 2016 Aug 22]

    Article  CAS  Google Scholar 

  • Chen Q, Chai Y-C, Mazumder S, Jiang C, Macklis RM, Chisolm GM, et al. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ. 2003;10(3):323–34.

    Article  CAS  PubMed  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppé J-P, Desprez P-Y, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cordes N, Meineke V. Cell adhesion-mediated radioresistance (CAM-RR): extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro. Strahlenther Onkol. 2003;179(5): 337–44.

    Article  PubMed  Google Scholar 

  • Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol. 2005;17(5 SPEC. ISS):499–508.

    Article  CAS  PubMed  Google Scholar 

  • Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93(5): 1658–67.

    Article  CAS  PubMed  Google Scholar 

  • Danen EHJ. Integrin signaling as a cancer drug target. ISRN Cell Biol. 2013;2013:1–14.

    Article  CAS  Google Scholar 

  • De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, et al. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst. 2011;103(8):645–61.

    Article  PubMed  CAS  Google Scholar 

  • Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11(2 Pt 1):728–34.

    CAS  PubMed  Google Scholar 

  • Dickreuter E, Cordes N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol Chem [Internet]. 2017;398(7): 721–35. http://www.ncbi.nlm.nih.gov/pubmed/28002024. [cited 2017 Dec 18]

    Article  CAS  Google Scholar 

  • Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem. 2005;280(35):31182–9.

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Ma YX, Wang JA, Yuan RQ, Meng Q, Cao Y, et al. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3′ kinase. Oncogene [Internet]. 2000;19(18):2212–23. Available from: pm:0010822371

    Article  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3): 486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell [Internet]. 2011;144(5):646–74. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21376230

    Article  CAS  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095): 885–9.

    Article  CAS  PubMed  Google Scholar 

  • Hein AL, Ouellete MM, Yan Y. Radiation-induced signaling pathways that promote cancer cell survival (Review). Int J Oncol. 2014;45(5):1813–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  PubMed  Google Scholar 

  • Jahangiri A, Aghi MK, Carbonell WS. ß1 integrin: critical path to antiangiogenic therapy resistance and beyond. Cancer Res. 2014;74(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51: 6304–11.

    CAS  PubMed  Google Scholar 

  • Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89.

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.

    Article  CAS  PubMed  Google Scholar 

  • Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montor WR, Salas AROSE, de Melo FHM. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol Cancer. 2018;17(1):1–18.

    Article  CAS  Google Scholar 

  • Moser M, Legate KR, Zent R, Fässler R. The tail of integrins, talin, and kindlins. Science [Internet]. 2009;324(5929):895–9. http://www.ncbi.nlm.nih.gov/pubmed/19443776. [cited 2014 Jul 15]

    CAS  Google Scholar 

  • Nurieva RI, Liu X, Dong C. Molecular mechanisms of T-cell tolerance. Immunol Rev. 2011;241(1):133–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1):S7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesterer O, Yang Q, Raju U, Torres M, Molkentine D, Patel N, et al. Combination of anti-IGF-1R antibody A12 and ionizing radiation in upper respiratory tract cancers. Int J Radiat Oncol Biol Phys [Internet]. 2011;79(4):1179–87.

    Google Scholar 

  • Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19(3):183–232.

    Article  CAS  PubMed  Google Scholar 

  • Slaney CY, Kershaw MH, Darcy PK. Trafficking of T cells into tumors. Cancer Res. 2014;74(24):7168–74.

    Article  CAS  PubMed  Google Scholar 

  • Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong Y-K, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol [Internet]. 2014;15(10):1100–8. http://www.ncbi.nlm.nih.gov/pubmed/25163906. [cited 2016 Mar 24]

    Article  CAS  Google Scholar 

  • Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–27.

    Article  CAS  PubMed  Google Scholar 

  • Teng MWL, Galon J, Fridman WH, Smyth MJ. From mice to humans: developments in cancer immunoediting. J Clin Investig. 2015;125(9):3338–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, et al. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther [Internet]. 2007;6(3):789–801. https://doi.org/10.1158/1535-7163.MCT-06-0596.

    Article  CAS  Google Scholar 

  • Vehlow A, Cordes N. Invasion as target for therapy of glioblastoma multiforme. Biochim Biophys Acta. 2013;1836(2):236–44.

    CAS  PubMed  Google Scholar 

  • Vellai T. Autophagy genes and ageing. Cell Death Differ. 2009;16(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 2016;9:5023–39.

    Article  CAS  Google Scholar 

  • Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yacoub A, Miller A, Caron RW, Qiao L, Curiel DA, Fisher PB, et al. Radiotherapy-induced signal transduction. Endocr Relat Cancer. 2006;13(Suppl 1):S99–114.

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Veine DM, Livant DL. Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin. Breast Cancer Res Treat. 2016;157(3):489–501. Springer US

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Cordes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cordes, N., Görte, J., Korovina, I., Förster, S. (2019). Signal Transduction in Radiation Oncology. In: Wenz, F. (eds) Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-52619-5_112-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52619-5_112-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52619-5

  • Online ISBN: 978-3-319-52619-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics