Skip to main content

Dry Thunderstorms

  • Living reference work entry
  • First Online:
Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abatzoglou JT, Kolden CA (2013) Relationships between climate and macroscale area burned in the western United States. Int J Wildland Fire 22:1003–1020

    Article  Google Scholar 

  • ADFFM (Arizona Department of Forestry and Fire Management) (2013) Yarnell Hill Fire serious accident investigation report. September 23. Phoenix, AZ

    Google Scholar 

  • Amatulli G, Peréz-Cabello F, de la Riva J (2007) Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol Model 200(3–4):321–333. https://doi.org/10.1016/J.ECOLMODEL.2006.08.001

    Article  Google Scholar 

  • Associated Press (2017) 62 killed in Portugal forest fires, many dying in their cars as flames weep road. Los Angeles Times. Accessible: http://www.latimes.com/world/la-fg-portugal-forest-fires-20170617-story.html

  • Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL (2017) Human expansion of the fire niche. Proc Natl Acad Sci 114(11):2946–2951. https://doi.org/10.1073/pnas.1617394114

    Article  Google Scholar 

  • Bessie WC, Johnson EA (1995) The relative importance of fuels and weather on fire behavior in sub-alpine forests. Ecology 76:747–762

    Article  Google Scholar 

  • Bothwell PD (2008a) Predicting the location and intensity of lightning using an experimental automated statistical method. In: Third conference on meteorological applications of lightning data. Amer. Meteor. Soc., New Orleans, 6 pp

    Google Scholar 

  • Bothwell PD (2008b) Evaluation of experimental/automated lightning forecasts for western U.S. fire season and significant lightning outbreaks in the eastern U.S. In: 2nd international lightning detection conference, April 24–25, Tucson, AZ. Vaisala, Inc, Tucson, 8 pp

    Google Scholar 

  • Bothwell PD (2009) Development, operational use, and evaluation of the perfect prog national lightning prediction system at the Storm Prediction Center. Preprints, Fourth conference on the meteorological applications of lightning data, Phoenix, AZ, Amer. Meteor. Soc., 6.2. Available online at ams.confex.com/ams/89annual/webprogram/Paper150697.html

  • Bright DR, Wandishin MS, Jewell R, Weiss SJ (2005) A physically based parameter for lightning prediction and its calibration in ensemble forecasts. 85th AMS annual meeting, American Meteorological Society - Combined Preprints 1993, pp 5699–5709

    Google Scholar 

  • Carleton AM (1986) Synoptic-dynamic character of “bursts” and “breaks” in the southwest U.S. summer precipitation singularity. J Climatol 6:605–623

    Article  Google Scholar 

  • Changnon SA (2001) Thunderstorm rainfall in the conterminous United States. Bull Am Meteorol Soc 82:1925–1940. https://doi.org/10.1175/1520-0477(2001)082<1925:TRITCU>2.3.CO;2

    Article  Google Scholar 

  • Clark AJ, Weiss SJ, Kain JS, Jirak IL, Coniglio M, Melick CJ, Siewert C, Sobash RA, Marsh PT, Dean AR, Xue M, Kong F, Thomas KW, Wang Y, Brewster K, Gao J, Wang X, Du J, Novak DR, Barthold FE, Bodner MJ, Levit JJ, Entwistle CB, Jensen TL, Correia J (2012) An overview of the 2010 hazardous weather testbed experimental forecast program spring experiment. Bull Am Meteorol Soc 93:55–74. https://doi.org/10.1175/BAMS-D-11-00040.1

    Article  Google Scholar 

  • Conedera M, Cesti G, Pezzatti G, Zumbrunnen T, Spinedi F (2006) Lightning-induced fires in the Alpine region: an increasing problem. For Ecol Manag 234. https://doi.org/10.1016/j.foreco.2006.08.096

    Article  Google Scholar 

  • Cotton WR, George RL, Wetzel PJ, McAnelly RL (1983) A Long-Lived Mesoscale Convective Complex. Part I: The Mountain-Generated Component. Mon Wea Rev 111:1893–1918. https://doi.org/10.1175/1520-0493(1983)111<1893:ALLMCC>2.0.CO;2

    Article  Google Scholar 

  • Douglas MW, Maddox RA, Howard K, Reyes S (1993) The Mexican monsoon. J Clim 6:1665–1677

    Article  Google Scholar 

  • Evett RR, Mohrle CR, Hall BL, Brown TJ, Stephens SL (2008) The effect of monsoonal atmospheric moisture on lightning wildfire ignitions in southwestern North America. Agric Forest Meteorol 148:1478–1487

    Article  Google Scholar 

  • Favors JE, Abatzoglou JT (2013) Regional surges of monsoonal moisture into the southwestern United States. Mon Weather Rev 141:182–191. https://doi.org/10.1175/MWR-D-12-00037.1

    Article  Google Scholar 

  • Fujita TT (1985) The downburst: microburst and macroburst. SMRP research paper 210, University of Chicago, 122 pp. [NTIS PB85-148880]

    Google Scholar 

  • Fuquay DM, Baughman RG, Latham DJ (1979) A model for predicting lightning fire ignition in wildland fuels. USDA forest service research paper INT-217. Intermountain Forest and Range Experiment Station, Ogden, 22 pp

    Google Scholar 

  • Ganteaume A, Camia A, Jappiot M, San Miguel-Ayanz J, Long-Fournel M, Lampin C (2013) A review of the main driving factors of forest fire ignition over Europe. Environ Manag 51(3):651–662. https://doi.org/10.1007/s00267-012-9961-z

    Article  Google Scholar 

  • Gedalof Z, Peterson D, Mantua N (2005) Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwestern United States. Ecol Appl 15:154–174

    Article  Google Scholar 

  • Goens DW, Andrews PL (1998) Weather and fire behavior factors related to the 1990 Dude Fire near Payson, Arizona. In: Proceedings: 2nd symposium on fire and forest meteorology. American Meteorological Society, Boston, pp 153–158

    Google Scholar 

  • Hall BL (2007) Precipitation associated with lightning-ignited wildfires in Arizona and New Mexico. Int J Wildland Fire 16:242–254

    Article  Google Scholar 

  • Hamilton DW, Lin Y-L, Weglarz RP, Kaplan ML (1998) Jetlet formation from diabatic forcing with applications to the 1994 Palm Sunday tornado outbreak. Mon Weather Rev 126:2061–2089

    Article  Google Scholar 

  • Higgins RW, Yao Y, Wang XL (1997) Influence of the North American Monsoon system on the U.S. summer precipitation regime. J Clim 10:2600–2622

    Article  Google Scholar 

  • Hockenberry HE (2017) Fire weather Services Product Specification. National Weather Service Instruction 10-401. Accessible: http://www.nws.noaa.gov/directives/sym/pd01004001curr.pdf

  • Houze RA Jr (1993) Cloud dynamics. International Geophysics Series, Academic Press, Waltham

    Google Scholar 

  • Kaplan ML, Lin Y-L, Hamilton DW, Rozumalski RA (1998) The numerical simulation of an unbalanced jetlet and its role in the Palm Sunday 1994 tornado outbreak in Alabama and Georgia. Mon Weather Rev 126:2133–2165

    Article  Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie, 1C:1-44. Verlag von Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Kuleshov Y, de Hoedt G, Wright W, Brewster A (2002) Thunderstorm distribution and frequency in Australia. Aust Meteorol Mag 51:145–154

    Google Scholar 

  • MacGorman DR, Rust WD (1998) The electrical nature of storms. Oxford University Press, New York

    Google Scholar 

  • Milne R (2004) A modified total totals index for thunderstorm potential over the Intermountain West. NOAA/NWS WR Tech. Attach. 04–04, www.wrh.noaa.gov/media/wrh/online_publications/TAs/ta0404.pdf

  • Nauslar NJ, Kaplan ML, Wallmann J, Brown TJ (2013) A forecast procedure for dry thunderstorms. J Operational Meteor 1(17):200–214. https://doi.org/10.15191/nwajom.2013.0117

    Article  Google Scholar 

  • Nauslar NJ, Hatchett BJ, Brown TJ, Kaplan ML, Mejia JF (2018) Impact of the North American Monsoon on wildfire activity in the southwest United States. Int J Climatol 1–16. https://doi.org/10.1002/joc.5899

  • Ordóñez C, Saavedra A, Rodríguez-Pérez JR, Castedo-Dorado F, Covián E (2012) Using model-based geostatistics to predict lightning-caused wildfires. Environ Model Softw 29:44–50

    Article  Google Scholar 

  • Parisien M-A, Snetsinger S, Greenberg JA, Nelson CR, Schoennagel T, Dobrowski SZ, Moritz MA (2012) Spatial variability in wildfire probability across the western United States. Int J Wildland Fire 21:313–327

    Article  Google Scholar 

  • Rorig ML, Ferguson SA (1999) Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J Appl Meteorol 38:1565–1575. https://doi.org/10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2

    Article  Google Scholar 

  • Rorig ML, Ferguson SA (2002) The 2000 fire season: lightning-caused fires. J Appl Meteorol 41:786–791. https://doi.org/10.1175/1520-0450(2002)041<0786:TFSLCF>2.0.CO;2

    Article  Google Scholar 

  • Rorig ML, McKay SJ, Ferguson SA, Werth P (2007) Model-generated predictions of dry thunderstorm potential. J Appl Meteorol Climatol 46:605–614. https://doi.org/10.1175/JAM2482.1

    Article  Google Scholar 

  • Schultz DM, Schumacher PN, Doswell CA, (2000) The Intricacies of Instabilities. Mon Wea Rev 128:4143–4148. https://doi.org/10.1175/1520-0493(2000)129<4143:TIOI>2.0.CO;2

    Article  Google Scholar 

  • Tripoli GJ, Cotton WR (1989) Numerical study of an observed orogenic mesoscale convective system: Part 1. Simulated genesis and comparison with observations. Mon Weather Rev 117:272–304

    Google Scholar 

  • Veraverbeke S, Rogers BM, Goulden ML, Jandt RR, Miller CE, Wiggins EB, Randerson JT (2017) Lightning as a major driver of recent large fire years in North American boreal forests. Nat Clim Chang 7:529. https://doi.org/10.1038/nclimate3329

    Article  Google Scholar 

  • Wakimoto RM (1985) Forecasting dry microburst activity over the high plains. Mon Weather Rev 113:1131–1143. https://doi.org/10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2

    Article  Google Scholar 

  • Wallmann J, Milne R, Smallcomb C, Mehle M (2010) Using the 21 June 2008 California lightning outbreak to improve dry lightning forecast procedures. Weather Forecast 25:1447–1462. https://doi.org/10.1175/2010WAF2222393.1

    Article  Google Scholar 

  • Werth PA, Potter BE, Clements CB, Finney M, Goodrick SL, Alexander ME, Cruz MG, Forthofer JA, McAllister SS (2011) Synthesis of knowledge of extreme fire behavior: Volume I for Fire managers. United States Department of Agriculture Volume PNW-GTR-85

    Google Scholar 

  • Wierzchowski J, Heathcott M, Flannigan MD (2002) Lightning and lightning fire, Central Cordillera, Canada. Int J Wildland Fire 11:41–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Nauslar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nauslar, N.J., Hatchett, B.J. (2019). Dry Thunderstorms. In: Manzello, S. (eds) Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires. Springer, Cham. https://doi.org/10.1007/978-3-319-51727-8_176-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51727-8_176-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51727-8

  • Online ISBN: 978-3-319-51727-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics