Skip to main content

Atomic-Scale Modeling of Fe-Al-Mn-C Alloy Using Pair Models and Monte-Carlo Calculations

  • Conference paper
  • First Online:
TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 4422 Accesses

Abstract

The Fe-Al-Mn-C system is widely studied for automotive applications due to its good mechanical properties and relatively low density. Our work is devoted to the atomic-scale modeling of this system and to start with, we focused on the well-documented Fe-Al binary system. More precisely, we tested the capability to reproduce its phase diagram combining ab initio calculations and cluster expansion methods. Several models were built using different input atomic configurations: pure iron, a substitutional aluminium atom diluted in iron, pairs of substitutional aluminium atoms located at different neighbour shells and complementary structures (B2, B32 and D03). Long-range order parameters (occupation of sublattices) were defined to analyse the equilibrium configurations generated by Monte-Carlo runs in the semi-grand canonical ensemble. Phase diagrams were plotted for each model and compare well with experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. I. Zuazo, B. Hallstedt, B. Lindahl, M. Selleby, M. Soler, A. Etienne, A. Perlade, D. Hasenpouth, V. Massardier-Jourdan, S. Cazottes, X. Kleber, Low-density steels: complex metallurgy for automotive applications. JOM 66(9), 1747 (2014)

    Article  Google Scholar 

  2. M.J. Yao, P. Dey, J.-B. Seol, P. Choi, M. Herbig, R.K.W. Marceau, T. Hickel, J. Neugebauer, D. Raabe, Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel. Acta Mater. 106, 229 (2016)

    Article  Google Scholar 

  3. P.G. Gonzales-Ormeno, H.M. Petrilli, C.G. Schon, Ab initio calculation of the bcc Fe-Al phase diagram including magnetic interactions. Scripta Mater. 54, 1271 (2006)

    Article  Google Scholar 

  4. V. Pierron-Bohnes, S. Lefebvre, M. Bessiere, A. Finel, Short range order in a single crystal of Fe-19.5 at.% Al in the ferromagnetic range measured through X-ray diffuse scattering. Acta Metall. Mater. 38(12), 2701 (1990)

    Article  Google Scholar 

  5. C. Bichara, G. Inden, Monte Carlo calculation of the phase diagram of BCC Fe-Al alloys. Scr. Metall. Mater. 25(11), 2607 (1991)

    Article  Google Scholar 

  6. F. Schmid, K. Binder, Modelling order-disorder and magnetic transitions in iron-aluminium alloys. J. Phys.: Condens. Matter 4(13), 3569 (1992)

    Google Scholar 

  7. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B 47(1), 558 (1993)

    Article  Google Scholar 

  8. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49(20), 14251 (1994)

    Article  Google Scholar 

  9. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  10. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    Article  Google Scholar 

  11. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)

    Article  Google Scholar 

  12. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758 (1999)

    Article  Google Scholar 

  13. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  Google Scholar 

  14. O. Madelung, Introduction to Solid-State Theory (Springer, Berlin, 1996)

    Google Scholar 

  15. M. Becker, W. Schweika, B32 order in iron rich Fe-Al alloys. Scr. Mater. 35(11), 1259 (1996)

    Article  Google Scholar 

  16. L. Anthony, B. Fultz, Kinetics of B2, DO3, and B32 ordering: results from pair approximation calculations and Monte Carlo simulations. J. Mater. Res. 9(2) (1994)

    Google Scholar 

  17. B.B. Lindahl, B.P. Burton, M. Selleby, Ordering in ternary BCC alloys applied to the Al-Fe-Mn system. CALPHAD 51, 211 (2015)

    Article  Google Scholar 

  18. A. Finel, Contribution à l’étude des effets d’ordre dans le cadre du modèle d’Ising: états de base et diagrammes de phase. PhD thesis, 1987

    Google Scholar 

  19. F. Stein, M. Palm, Re-determination of transition temperatures in the Fe-Al system by differential thermal analysis. IJMR 98(7), 580 (2007)

    Article  Google Scholar 

  20. H. Ackermann, G. Inden, R. Kikuchi, Tetrahedron approximation of the cluster variation method for BCC alloys. Acta Metall. 37(1), 1 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Agence Nationale de la Recherche project MeMnAl-Steels for its financial support under contract ANR-RNMP-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Dequeker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Dequeker, J., Legris, A., Besson, R., Thuinet, L. (2017). Atomic-Scale Modeling of Fe-Al-Mn-C Alloy Using Pair Models and Monte-Carlo Calculations. In: TMS, T. (eds) TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51493-2_37

Download citation

Publish with us

Policies and ethics