Skip to main content

Paradoxical Worsening of Tuberculosis of the Nervous System During Treatment

  • Chapter
  • First Online:
  • 1106 Accesses

Abstract

Paradoxical worsening of tuberculosis (TB) during treatment or paradoxical reactions (PRs) is defined as deterioration of pre-existing TB of the nervous system or appearance of new TB lesions on anti-TB treatment. It is much more common than previously thought and may be seen in more than 50% of patients with nervous system TB. PR is also seen in HIV patients after initiation of highly active anti-retroviral treatment and is referred to as paradoxical immune reconstitution inflammatory syndrome (IRIS). Acute worsening may occur secondary to worsening leptomeningeal exudates, increase in size of persisting tuberculoma or appearance of new tuberculoma, infarcts, or worsening of hydrocephalus. These features may occur at a variable period ranging from few days to several months after starting of treatment. The precise pathophysiology of PR is not known. It is believed that an exaggerated immune response to mycobacterial antigen is responsible for PR. A reduced CD4 cell count, a high retroviral load, and small time lag between initiation of anti-retroviral therapy and anti-TB treatment are predictors of paradoxical-IRIS. Majority of patients improve on continued anti-TB treatment and steroids. Other immunomodulators have also been used in individual patients not improving on corticosteroids. PR may produce life-threatening complications like hydrocephalus or increase in size of tuberculoma or TB abscess that may require urgent neurosurgical intervention. Permanent neurological sequelae may occur in patients like vision loss, hemiparesis or paraparesis, and permanent behavioral or cognitive deficits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

HART:

Highly active anti-retroviral treatment

HIV:

Human immunodeficiency virus

IFN:

Interferon

IL:

Interleukins

IRIS:

Immune reconstitution inflammatory syndrome

PR:

Paradoxical reaction

PR-IRIS:

Paradoxical immune reconstitution inflammatory syndrome

TB:

Tuberculosis

TBM:

Tuberculous meningitis

TLR:

Toll-like receptors

TNF:

Tumor necrosis factor

TREM:

Triggering receptor expressed on myeloid cells

References

  1. Garg RK, Malhotra HS, Kumar N (2014) Paradoxical reaction in HIV negative tuberculous meningitis. J Neurol Sci 340:26–36

    Article  PubMed  Google Scholar 

  2. Tai ML, Nor HM, Kadir KA, Viswanathan S, Rahmat K, Zain NR, Ong KG, Rafia MH, Tan CT (2016) Paradoxical manifestation is common in HIV-negative tuberculous meningitis. Medicine (Baltimore) 95:e1997

    Article  Google Scholar 

  3. Cherian A, Thomas SV (2011) Central nervous system tuberculosis. Afr Health Sci 11:116–127

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W, Elliott JH, Murdoch D, Wilkinson RJ, Seyler C, John L, van der Loeff MS, Reiss P, Lynen L, Janoff EN, Gilks C, Colebunders R (2008) International network for the study of HIV-associated IRIS. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis 8:516–523

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carvalho AC, De Iaco G, Saleri N, Pini A, Capone S, Manfrin M, Matteelli A (2006) Paradoxical reaction during tuberculosis treatment in HIV-seronegative patients. Clin Infect Dis 42:893–895

    Article  CAS  PubMed  Google Scholar 

  6. Cheng VCC, Ho PL, Lee RA, Chan KS, Chan KK, Woo PCY, Lau SKP, Yuen KY (2002) Clinical spectrum of paradoxical deterioration during anti TB therapy in non-HIV-infected patients. Eur J Clin Microbiol Infect Dis 21:803–809

    Article  CAS  PubMed  Google Scholar 

  7. Lorent N, Sebatunzi O, Mukeshimana G, Van den Ende J, Clerinx J (2011) Incidence and risk factors of serious adverse events during antituberculous treatment in Rwanda: a prospective cohort study. PLoS One 6:e19566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng VC, YamWC WPC, Lau SK, Hung IF, Wong SP, Cheung WC, Yuen KY (2003) Risk factors for development of paradoxical response during antituberculosis therapy in HIV-negativepatients. Eur J Clin Microbiol Infect Dis 22:597–602

    Article  CAS  PubMed  Google Scholar 

  9. Geri G, Passeron A, Heym B, Arlet JB, Pouchot J, Capron L, Rangue B (2013) Paradoxical reactions during treatment of tuberculosis with extrapulmonary manifestations in HIV negative patients. Infection 41:537–543

    Article  CAS  PubMed  Google Scholar 

  10. Olive C, Mouchet F, Toppet V, Haelterman E, Levy J (2013) Paradoxical reaction during TB treatment in immunocompetent children: clinical spectrumand risk factors. Pediatr Infect Dis J 32:446–449

    Article  PubMed  Google Scholar 

  11. Sütlas PN, Unal A, Forta H, Senol S, Kirbas D (2003) Tuberculous meningitis in adults: review of 61 cases. Infection 31:387–391

    PubMed  Google Scholar 

  12. Schoeman JF, Donald PR (2013) Tuberculous meningitis. Handb Clin Neurol 112:1135–1138

    Article  CAS  PubMed  Google Scholar 

  13. Anupriya A, Sunithi M, Maya T, Goel M, Alexander M, Aaron S, Mathew V (2010) Tuberculous optochiasmatic arachnoiditis. Neurol India 58:732–735

    Article  CAS  PubMed  Google Scholar 

  14. Sinha MK, Garg RK, Anuradha HK, Agarwal A, Parihar A, Mandhani PA (2010) Paradoxical vision loss associated with optochiasmatic tuberculoma in tuberculous meningitis: a report of 8 patients. J Infect 60:458–466

    Article  PubMed  Google Scholar 

  15. Sinha MK, Garg RK, Anuradha HK, Agarwal A, Singh MK, Verma R, Shukla R (2010) Vision impairment in tuberculous meningitis: predictors and prognosis. J Neurol Sci 290:27–32

    Article  PubMed  Google Scholar 

  16. Anuradha HK, Garg RK, Agarwal A, Sinha MK, Verma R, Singh MK, Shukla R (2010) Predictors of stroke in patients with tuberculous meningitis and its effect on the outcome. Q J Med 103:671–678

    Article  CAS  Google Scholar 

  17. Misra UK, Kalita J, Nair PP (2010) Role of aspirin in tuberculous meningitis: a randomized open label placebo controlled trial. J Neurol Sci 293:12–17

    Article  CAS  PubMed  Google Scholar 

  18. Singh B, Garg RK, SinghMK VR, Malhotra HS, Jain A, Singh R, Kohli N, Phadke RV, Shukla R, Parihar A (2012) Computed tomography angiography in patients with tuberculous meningitis. J Infect 64:565–572

    Article  PubMed  Google Scholar 

  19. Anuradha HK, Garg RK, Sinha MK, Agarwal A, Verma R, SinghMK AA, Verma R, Singh MK, Shukla R (2011) Intracranial tuberculomas in patients with tuberculous meningitis: predictors and prognostic significance. Int J Tuberc Lung Dis 15:234–239

    CAS  PubMed  Google Scholar 

  20. Thwaites GE, Macmullen-Price J, Tran TH, Pham PM, Nguyen TD, Simmons CP, White NJ, Tran TH, Summers D, Farrar JJ (2007) Serial MRI to determine the effect of dexamethasone on the cerebral pathology of tuberculous meningitis: an observational study. Lancet Neurol 6:230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raut T, Garg RK, Jain A, Verma R, Singh MK, Malhotra HS, Kohli N, Parihar A (2013) Hydrocephalus in tuberculousmeningitis: Incidence, its predictive factors and impact on the prognosis. J Infect 66:330–337

    Article  PubMed  Google Scholar 

  22. Singh P, Paliwal VK, Neyaz Z, Srivastava AK, Verma R, Mohan S (2014) Clinical and magnetic resonance imaging characteristics of tubercular ventriculitis: an under-recognized complication of tubercular meningitis. J Neurol Sci 342:137–140

    Article  PubMed  Google Scholar 

  23. Gupta A, Garg RK, Singh MK, Verma R, Malhotra HS, Sankhwar SN, Jain A, Singh R, Parihar A (2013) Bladder dysfunction and urodynamic study in tuberculous meningitis. J Neurol Sci 327:46–54

    Article  PubMed  Google Scholar 

  24. Dastur D, Wadia NH (1969) Spinal meningitides with radiculo-myelopathy. 2. Pathology and pathogenesis. J Neurol Sci 8:261–297

    Article  CAS  PubMed  Google Scholar 

  25. Gupta RK, Gupta S, Kumar S, Kohli A, Misra UK, Gujral RB (1994) MRI in intraspinal tuberculosis. Neuroradiology 36:39–43

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava T, Kochar DK (2003) Asymptomatic spinal arachnoiditis in patients with tuberculous meningitis. Neuroradiology 45:727–729

    Article  CAS  PubMed  Google Scholar 

  27. Citow JS, Ammirati M (1994) Intramedullary tuberculoma of the spinal cord: case report. Neurosurgery 35:327–330

    Article  CAS  PubMed  Google Scholar 

  28. Skendros P, Kamaria F, Kontopoulos V, Tsitouridis I, Sidiropoulos L (2003) Intradural, extramedullary tuberculoma of the spinal cord as a complication of tuberculous meningitis. Infection 31:115–117

    Article  CAS  PubMed  Google Scholar 

  29. Muthukumar N, Sureshkumar V, Ramesh VG (2007) En plaque intradural extramedullary spinal tuberculoma and concurrent intracranial tuberculomas: paradoxical response to antituberculous therapy. Case report J Neurosurg Spine 6:169–173

    Article  PubMed  Google Scholar 

  30. Moghtaderi A, Alavi-Naini R, Rahimi-Movaghar V (2006) Syringomyelia: an early complication of tuberculous meningitis. Trop Doct 36:254–255

    Article  PubMed  Google Scholar 

  31. Daif AK, al Rajeh S, Ogunniyi A, al Boukai A, al Tahan A (1997) Syringomyelia developing as an acute complication of tuberculous meningitis. Can J Neurol Sci 24:73–76

    Article  CAS  PubMed  Google Scholar 

  32. Pandey S, Nayak R, Mehndiratta MM (2013) Early syringomyelia in tubercular meningitis: a rare occurrence. J Neurol Res 3:46–48

    Google Scholar 

  33. Teoh R, O'Mahony G, Yeung VT (1986) Polymorphonuclear pleocytosis in the cerebrospinal fluid during chemotherapy for tuberculous meningitis. J Neurol 233:237–241

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Monco JC, Ferreira E, Gomez-Beldarrain M (2005) The therapeutic paradox in the diagnosis of tuberculous meningitis. Neurology 65:1991–1992

    Article  PubMed  Google Scholar 

  35. Afghani B, Lieberman JM (1994) Paradoxical enlargement or development of intracranial tuberculomas during therapy: case report and review. Clin Infect Dis 19:1092–1099

    Article  CAS  PubMed  Google Scholar 

  36. Kim SH, Kim YS (2009) Immunologic paradox in the diagnosis of tuberculous meningitis. Clin Vaccine Immunol 16:1847–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    Article  CAS  PubMed  Google Scholar 

  38. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357:1777–1789

    Article  CAS  PubMed  Google Scholar 

  39. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738

    Article  CAS  PubMed  Google Scholar 

  40. Afzali B, Lombardi G, Lechler RI, Lord GM (2007) The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 148:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD41 effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    Article  CAS  PubMed  Google Scholar 

  42. Martin-Blondel G, Mars LT, Liblau RS (2012) Pathogenesis of the immune reconstitution inflammatory syndrome in HIV-infected patients. Curr Opin Infect Dis 25:312–320

    Article  CAS  PubMed  Google Scholar 

  43. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057

    Article  CAS  PubMed  Google Scholar 

  44. Belkaid Y, Tarbell K (2009) Regulatory T cells in the control of host microorganism interactions. Annu Rev Immunol 27:551–589

    Article  CAS  PubMed  Google Scholar 

  45. Hawkey CR, Yap T, Pereira J, Moore DA, Davidson RN, Pasvol G, Kon OM, Wall RA, Wilkinson RJ (2005) Characterization and management of paradoxical upgrading reactions in HIV-uninfected patients with lymph node TB. Clin Infect Dis 40:1368–1371

    Article  PubMed  Google Scholar 

  46. Sáenz B, Hernandez-Pando R, Fragoso G, Bottasso O, Cárdenas G (2013) The dual face of central nervous system tuberculosis: a new Janus Bifrons? Tuberculosis (Edinb) 93:130–135

    Article  Google Scholar 

  47. Marais S, Meintjes G, Pepper DJ, Dodd LE, Schutz C, Ismail Z, Wilkinson KA, Wilkinson RJ (2013) Frequency, severity, and prediction of tuberculous meningitis immune reconstitution inflammatory syndrome. Clin Infect Dis 56:450–460

    Article  CAS  PubMed  Google Scholar 

  48. Bekker LG, Maartens G, Steyn L, Kaplan G (1998) Selective increase in plasma tumor necrosis factor-alpha and concomitant clinical deterioration after initiating therapy in patients with severe tuberculosis. J Infect Dis 178:580–584

    Article  CAS  PubMed  Google Scholar 

  49. Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR (1997) Effect of corticosteroids on intracranial pressure, computed tomographic findings, and clinical outcome in young children with tuberculous meningitis. Pediatrics 99:226–231

    Article  CAS  PubMed  Google Scholar 

  50. Jorge JH, Graciela C, Pablo AP, Luis SH (2012) A life-threatening central nervous system tuberculosis inflammatory reaction nonresponsive to corticosteroids and successfully controlled by infliximab in a young patient with a variant of juvenile idiopathic arthritis. J Clin Rheumatol 18:189–191

    Article  PubMed  Google Scholar 

  51. Lee HS, Lee Y, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH (2012) Adalimumab treatment may replace or enhance the activity of steroids in steroid-refractory tuberculous meningitis. J Infect Chemother 18:555–557

    Article  CAS  PubMed  Google Scholar 

  52. Schoeman JF, Springer P, van Rensburg AJ, Swanevelder S, Hanekom WA, Haslett PA, Kaplan G (2004) Adjunctive thalidomide therapy for childhood tuberculous meningitis: results of a randomized study. J Child Neurol 19:250–257

    Article  PubMed  Google Scholar 

  53. Nandi B, Behar SM (2011) Regulation of neutrophils by interferon-γ limits lung inflammation during TB infection. J Exp Med 208:2251–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gonzalez-Duarte A, Higuera-Calleja J, Flores F, Davila-Maldonado L, Cantú-Brito C (2012) Cyclophosphamide treatment for unrelenting CNS vasculitis secondary to tuberculous meningitis. Neurology 78:1277–1278

    Article  CAS  PubMed  Google Scholar 

  55. Bas NS, Güzey FK, Emel E, Alatas I, Sel B (2005) Paradoxical intracranial tuberculoma requiring surgical treatment. Pediatr Neurosurg 41:201–205

    Article  PubMed  Google Scholar 

  56. Shaharao VB, Pawar M, Agarwal R, Bavdekar SB (2004) Intra-medullary tuberculoma occurringduring treatment of tuberculous meningitis. Indian J Pediatr 71:107–108

    Article  CAS  PubMed  Google Scholar 

  57. French MA, Price P, Stone SF (2004) Immune restoration disease after antiretroviral therapy. AIDS 18:1615–1627

    Article  CAS  PubMed  Google Scholar 

  58. Shelburne SA, Montes M, Hamill RJ (2006) Immune reconstitution inflammatory syndrome: more answers, more questions. J Antimicrob Chemother 57:167–170

    Article  CAS  PubMed  Google Scholar 

  59. Colebunders R, John L, Huyst V, Kambugu A, Scano F, Lynen L (2006) Tuberculosis immune reconstitution inflammatory syndrome in countries with limited resources. Int J Tuberc Lung Dis 10:946–953

    CAS  PubMed  Google Scholar 

  60. Müller M, Wandel S, Colebunders R, Attia S, Furrer H, Egger M, FOR iEdea Southern and Central Africa (2010) Incidence and lethality of immune reconstitution disease in HIN-infected patients starting antiretroviral therapy: systemic review and meta-analysis. Lancet Infect Dis 10:251–261

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pepper DJ, Marais S, Maartens G, Rebe K, Morroni C, Rangaka MX, Oni T, Wilkinson RJ, Meinties G (2009) Neurologic manifestations of paradoxical TB-associated immune reconstitution inflammatory syndrome: a case series. Clin Infect Dis 48:e96–107

    Article  PubMed  Google Scholar 

  62. Bucy RP, Hockett RD, Derdeyn CA, Saag MS, Squires K, Sillers M, Mitsuyasu RT, Kilby JM (1999) Initial increase in blood CD4 lymphocytes after HIVantiretroviral therapy reflects redistribution from lymphoid tissues. J Clin Invest 103:1391–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Datta S, Sarvetnick N (2009) Lymphocyte proliferation in immunemediated diseases. Trends Immunol 30:430–438

    Article  CAS  PubMed  Google Scholar 

  64. Schulze ZurWiesch J, Thomssen A, Hartjen P, Tóth I, Lehmann C, Meyer-Olson D, Colberg K, Frerk S, Babikir D, Schmiedel S, Degen O, Mauss S, Rockstroh J, Staszeqski S, Khayin P, Strasak A, Lohse WA, Fätkenheuer G, Hauber J, van Lunzen J (2011) Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP31 T regulatory cells correlates with progressive disease. J Virol 85:1287–1297

    Article  CAS  Google Scholar 

  65. Lai RP, Meintjes G, Wilkinson KA, Graham CM, Marais S, Van der Plas H, Deffur A, Schutz C, Bloom C, Munagala I, Anguiano E, Goliath R, Maartens G, Banchereau J, Chaussabel D, O'Garra A, Wilkinson RJ (2015) HIV-tuberculosis-associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and inflammasome signalling. Nat Commun 6:8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mori S, Levin P (2009) A brief review of potential mechanisms of immune reconstitution inflammatory syndrome in HIV following antiretroviral therapy. Int J STD AIDS 20:447–452

    Article  CAS  PubMed  Google Scholar 

  67. Meintjes G, Wilkinson RJ, Morroni C, Pepper DJ, Rebe K, Rangaka MX, Oni T, Maartens G (2010) Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS 24:2381–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pozniak AL, Coyne KM, Miller RF, Lipman MCI, Freedman AR, Ormerod LP, Johnson MA, Collins S, Lucas SB, on behalf of the BHIVA guidelines subcommittee (2011) British HIV association guidelines for the treatment of TB/HIV coinfection 2011. HIV Med 12:517–524

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Kumar Paliwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Paliwal, V.K. (2017). Paradoxical Worsening of Tuberculosis of the Nervous System During Treatment. In: Turgut, M., Akhaddar, A., Turgut, A., Garg, R. (eds) Tuberculosis of the Central Nervous System. Springer, Cham. https://doi.org/10.1007/978-3-319-50712-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50712-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50711-8

  • Online ISBN: 978-3-319-50712-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics