Skip to main content

Animal Models of Cerebral Palsy: What Can We Learn About Cerebral Palsy in Humans

  • Living reference work entry
  • First Online:
Cerebral Palsy

Abstract

Cerebral palsy (CP) is caused by nonprogressive neurological damage and manifested by disordered movement and posture, which leads to motor dysfunction. Two of the known etiologies of CP are perinatal asphyxia and prenatal/perinatal infection. Attempts to better understand the etiology and pathogenesis of CP have brought many investigators to develop animal models that mimic human CP. Mice and rats were extensively used but they have several disadvantages: due to short gestation, the brain at delivery is very immature and therefore most models are of young postnatal animals whose brains are at the developmental stage of the third trimester human fetus. Postnatal young mice and rat offspring are subjected to hypoxia/ischemia or infection/inflammation or a combination of the two. The clinical presentation is different compared to human CP, and there is a tendency for spontaneous recovery. Rabbits have a longer gestation and the injuries can be produced during the last week of pregnancy. Yet, the clinical picture of the induced brain damage is different from that in humans, and here too, there is a tendency for spontaneous recovery. Sheep have a relatively long gestation and the different models more closely resemble human CP. Nonhuman primates show similar nonprogressive motor impairment following either hypoxia/ischemia or infection/inflammation. The extent of the brain damage and the clinical findings are similar to human CP with similar neuropathological brain findings and with good possibilities to assess a variety of treatment modalities. We conclude that the animal model of CP should be chosen according to the aims of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams Waldorf KM, Rubens CE, Gravett MG (2011) Use of nonhuman primate models to investigate mechanisms of infection-associated preterm birth. BJOG 118(2):136–144

    Article  CAS  PubMed  Google Scholar 

  • Andreani JC, Guma C (2008) New animal model to mimic spastic cerebral palsy: the brain-damaged pig preparation. Neuromodulation 11(3):196–201

    Article  PubMed  Google Scholar 

  • Back SA, Riddle A, Dean J, Hohimer AR (2012) The instrumental fetal sheep as a model of cerebral white matter injury in the premature infant. Neurotherapeutics 9:359–370

    Article  PubMed Central  PubMed  Google Scholar 

  • Balakrishnan B, Dai H, Janisse J, Romero R, Kannan S (2013) Maternal endotoxin exposure results in abnormal neuronal architecture in the newborn rabbit. Dev Neurosci 35(5):396–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balasubramaniam J, Del Bigio MR (2006) Animal models of germinal matrix hemorrhage. J Child Neurol 21(5):365–371

    Article  PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG (2006) Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 23(5):635–659

    Article  PubMed  Google Scholar 

  • Boska P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24:881–897, 2010

    Article  Google Scholar 

  • Brew N, Azhan A, den Heijer I, Boomgardt M, Davies GI, Nitsos I, Miller SL, Walker AM, Walker DW, Wong FY (2016) Dopamine treatment during acute hypoxia is neuroprotective in the developing sheep brain. Neuroscience 316:82–93

    Article  CAS  PubMed  Google Scholar 

  • Burd I, Breen K, Friedman A, Chai J, Elovitz MA (2010) Magnesium sulfate reduces inflammation-associated brain injury in fetal mice. Am J Obstet Gynecol 202(3):292e1–292e9

    Article  Google Scholar 

  • Coq JA, Delcour M, Massicotte VS, Baud O, Barbe MF (2016) Prenatal ischemia deteriorates white matter, brain organization and function. Implications for prematurity and cerebral palsy. Dev Med Child Neurol 58(suppl 4):7–11

    Article  PubMed Central  PubMed  Google Scholar 

  • Derrick M, Luo NL, Bregman JC, Jilling T, Ji X, Fisher K, Gladson CL, Beardsley DJ, Murdoch G, Back SA, Tan S (2004) Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy? J Neurosci 24(1):24–34

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos AS, de Almeida W, Popik B, Sbardelotto BM, Torrejais MM, de Souza MA, Centenaro LA (2017) Characterization of a cerebral palsy-like model in rats; analysis of gait pattern and of brain and spinal cord motor areas. Int J Dev Neurosci 60:48–55

    Article  PubMed  Google Scholar 

  • Drobyshevsky A, Derrick M, Luo K, Zhang LQ, Wu YN, Takada SH, Yu L, Tan S (2012) Near-term fetal hypoxia-ischemia in rabbits: MRI can predict muscle tone abnormalities and deep brain injury. Stroke 43(10):2757–2763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan JR, Cock ML, Scheerlinck JP, Westcott KT, McLean C, Harding R, Rees SM (2002) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52(6):941–949

    Article  CAS  PubMed  Google Scholar 

  • Hallak M, Hotra JW, Kupsky WJ (2000) Magnesium sulfate protection of fetal brain from severe maternal hypoxia. Obstet Gynecol 96(1):124–128, 2000

    CAS  PubMed  Google Scholar 

  • Hirvonen M, Ojala R, Korhonen P, Haataja P, Eriksson K, Gissler M, Luukkaala T, Tammela O (2014) Cerebral palsy among children born moderately and late preterm. Pediatrics 134:e1584–e1593

    Article  PubMed  Google Scholar 

  • Kasahara Y, Ihara M, Nakagomi T, Momota Y, Stern DM, Matsuyama T, Taguchi A (2013) A highly reproducible model of cerebral ischemia/reperfusion with extended survival in CB-17 mice. Neurosci Res 76(3):163–168

    Article  PubMed  Google Scholar 

  • Kliegman R et al (eds) (2016) Nelson textbook of pediatrics, 20th edn. Elsevier, Prematurity, pp 821–834; Cerebral Palsy, pp 2896–2899

    Google Scholar 

  • Mallard EC, Waldvogel HJ, Williams CE, Faull RL, Gluckman PD (1995) Repeated asphyxia causes loss of striatal projection neurons in the fetal sheep brain. Neuroscience 65(3):827–836

    Article  CAS  PubMed  Google Scholar 

  • Mallard C, Welin AK, Peebles D, Hagberg H, Kjellmer I (2003) White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 28(2):215–223

    Article  CAS  PubMed  Google Scholar 

  • Marcuzzo S, Dutra MF, Stigger F, do Nascimento PS, Ilha J, Kalil-Gaspar PI, Achaval M (2008) Beneficial effects of treadmill training in a cerebral palsy-like rodent model: walking pattern and soleus quantitative histology. Brain Res 1222:129–140

    Article  CAS  PubMed  Google Scholar 

  • Marques MR, Stigger F, Segabinazi E, Augustin OA, Barbosa S, Piazza FV, Achaval M, Marcuzzo S (2014) Beneficial effects of early environmental enrichment on motor development and spinal cord plasticity in a rat model of cerebral palsy. Behav Brain Res 263:149–155

    Article  PubMed  Google Scholar 

  • Martin JH, Chakrabarty S, Friel KM (2011) Harnessing activity-dependent plasticity to repair the damaged corticospinal tract in an animal model of cerebral palsy. Dev Med Child Neurol 53(Suppl 4):9–13

    Article  PubMed Central  PubMed  Google Scholar 

  • Marumo G, Kozuma S, Ohyu J, Hamai Y, Machida Y, Kobayashi K (2001) Generation of periventricular leukomalacia by repeated umbilical cord occlusion in near-term fetal sheep and its possible pathogenetical mechanisms. Biol Neonate 79(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • McAdams RM, Fleiss B, Traudt C, Schwendimann L, Snyder JM, Haynes RL, Natarajan N, Gressens P, Juul SE (2017a) Long-term neuropathological changes associated with cerebral palsy in a nonhuman primate model of hypoxic-ischemic encephalopathy. Dev Neurosci 39(1-4):124–140

    Article  CAS  PubMed  Google Scholar 

  • McAdams RM, McPherson RJ, Kapur RP, Juul SE (2017b) Focal brain injury associated with a model of severe hypoxic-ischemic encephalopathy in nonhuman primates. Dev Neurosci 39(1-4):107–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moster D, Lie RT, Markestad T (2008) Long-term medical and social consequences of preterm birth. N Engl J Med 359:262–273

    Article  CAS  PubMed  Google Scholar 

  • Ohyu J, Marumo G, Ozawa H, Takashima S, Nakajima K, Kohsaka S, Hamai Y (1999) Early axonal and glial pathology in fetal sheep brains with leukomalacia induced by repeated umbilical cord occlusion. Brain and Development 21(4):248–252

    Article  CAS  PubMed  Google Scholar 

  • Rha DW, Kang SW, Park YG, Cho SR, Lee WT, Lee JE, Nam CM, Han KH, Park ES (2011) Effects of constraint-induced movement therapy on neurogenesis and functional recovery after early hypoxic-ischemic injury in mice. Dev Med Child Neurol 53(4):327–333

    Article  PubMed  Google Scholar 

  • Saadani-Makki F, Kannan S, Makki M, Muzik O, Janisse J, Romero R, Chugani D (2009) Intrauterine endotoxin administration leads to white matter diffusivity changes in newborn rabbits. J Child Neurol 24(9):1179–1189

    Article  PubMed Central  PubMed  Google Scholar 

  • Skoff RP, Bessert DA, Barks JD, Song D, Cerghet M, Silverstein FS (2001) Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Int J Dev Neurosci 19(2):197–208

    Article  CAS  PubMed  Google Scholar 

  • Stigger F, Felizzola AL, Kronbauer GA, Couto GK, Achaval M, Marcuzzo S (2011a) Effects of fetal exposure to lipopolysaccharide, perinatal anoxia and sensorimotor restriction on motor skills and musculoskeletal tissue: implications for an animal model of cerebral palsy. Exp Neurol 228(2):183–191

    Article  CAS  PubMed  Google Scholar 

  • Stigger F, do Nascimento PS, Dutra MF, Couto GK, Ilha J, Achaval M, Marcuzzo S (2011b) Treadmill training induces plasticity in spinal motoneurons and sciatic nerve after sensorimotor restriction during early postnatal period: new insights into the clinical approach for children with cerebral palsy. Int J Dev Neurosci 29(8):833–838

    Article  PubMed  Google Scholar 

  • Svedin P, Kjellmer I, Welin AK, Blad S, Mallard C (2005) Maturational effects of lipopolysaccharide on white matter injury in fetal sheep. J Child Neurol 20(120):960–965

    Article  PubMed  Google Scholar 

  • Tan S, Drobyshevsky A, Jilling T, Ji X, Ullman LM, Englof I, Derrick M (2005) Model of cerebral palsy in the perinatal rabbit. J Child Neurol 20(12):972–979

    Article  PubMed  Google Scholar 

  • Traudt CM, McPherson RJ, Bauer LA, Richards TL, Burbacher TM, McAdams RM, Juul SE (2013) Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci 35(6):491–503

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Ohshima M, Taguchi A, Kasahara Y, Ikeda T, Matsuyama T (2013) A novel reproducible model of neonatal stroke in mice: comparison with a hypoxia-ischemia model. Exp Neurol 247:218–225, 2013

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hellgren G, Löfqvist C, Li W, Hellström A, Hagberg H, Mallard C (2009) White matter damage after chronic subclinical inflammation in newborn mice. J Child Neurol 24(9):1171–1178

    Article  PubMed Central  PubMed  Google Scholar 

  • Willette AA, Lubach GR, Knickmeyer RC, Short SJ, Styner M, Gilmore JH, Coe CL (2011) Brain enlargement and increased behavioral and cytokine reactivity in infant monkeys following acute prenatal endotoxemia. Behav Brain Res 219(1):108–111

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Rang M (1990) The spastic mouse and the search for an animal model of spasticity in human beings. Clin Orthop Relat Res 253:12–19

    Google Scholar 

  • Wu YW, Colford JR (2000) Chorioamnionitis as a risk factor for cerebral palsy. JAMA 284:1417–1424

    Article  CAS  PubMed  Google Scholar 

  • Yager JY, Thornhill JA (1997) The effects of age on susceptibility to hypoxic-ischemic brain damage. Neurosci Behav Rev 21:167–174

    Article  CAS  Google Scholar 

  • Yager JY, Shuaib A, Thornhill J (1996) The effects of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. Dev Brain Res 93:143–154, 1996

    Article  CAS  Google Scholar 

  • Yoon BH, Kim CJ, Romero R, Jun JK, Park KH, Choi ST, Chi JG (1997) Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol 177(4):797–880

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H, Lino S, Sato N, Osamura T, Hasegawa K, Ochi M, Sawada T, Kusunoki T (1989) New model of hemorrhagic hypoxic-ischemic encephalopathy in newborn ice. Pediatr Neurol 5:221–225

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Derrick M, Ji H, Silverman RB, Whitsett J, Vásquez-Vivar J, Tan S (2011) Neuronal nitric oxide synthase inhibition prevents cerebral palsy following hypoxia-ischemia in fetal rabbits: comparison between JI-8 and 7-nitroindazole. Dev Neurosci 33(3–4):312–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaghloul N, Patel H, Ahmed MN (2017) A model of Periventricular Leukomalacia (PVL) in neonate mice with histopathological and neurodevelopmental outcomes mimicking human PVL in neonates. PLoS One 12(4):e0175438

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asher Ornoy .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ornoy, A. (2018). Animal Models of Cerebral Palsy: What Can We Learn About Cerebral Palsy in Humans. In: Miller, F., Bachrach, S., Lennon, N., O'Neil, M. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-50592-3_218-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50592-3_218-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50592-3

  • Online ISBN: 978-3-319-50592-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics