Skip to main content

Cluster-Guided Multiscale Lung Modeling via Machine Learning

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Accurate prediction of airflow distribution and aerosol transport in the human lungs, which are difficult to be measured in vivo but important to understand the structure and function relationship, is challenging. It is because the interplay between them spans more than two orders of magnitude in dimension from the trachea to alveoli. This chapter reviews the techniques and strategies for modeling lungs both within and between subjects, viz., subject specificity versus generalization from individuals to populations, with both exhibiting multiscale characteristics. For “within-subject” modeling, a computed tomography (CT)-derived subject-specific computational fluid dynamics (CFD) lung model is presented. The pipeline for building such an imaging-based lung model is composed of image segmentation and processing, geometrical modeling labeled with anatomical information, image registration, three-dimensional (accurate) and one-dimensional (approximate) coupling techniques, and a high-fidelity turbulent flow model. The subject-specific model is essential in predicting local structural and functional interactions. For “between subjects” modeling, machine learning is employed to identify homogeneous subpopulations (clusters), among healthy and diseased populations, aiming to bridge individual and population scales. For this purpose, three major issues need to be addressed. They are intersubject variability (due to, e.g., gender, age, and height), inter-site variability (due to scanner and imaging protocol differences), and definition of quantitative CT imaging-based metrics at multiple scales (due to alterations at different disease stages) needed for clustering. The use of the cluster membership to select representative subjects for detailed CFD analysis enables an examination of the cluster-specific structural and functional relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Burgel P-R, Roche N, Paillasseur J-L et al (2012) Clinical COPD phenotypes identified by cluster analysis: validation with mortality. Eur Respir J 40:495–496

    Article  Google Scholar 

  • Busacker A, Newell JD, Keefe T et al (2009) A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. Chest 135:48–56

    Article  Google Scholar 

  • Busse WW, Lemanske RF Jr (2001) Asthma. N Engl J Med 344:350–362

    Article  Google Scholar 

  • Cho MH, Washko GR, Hoffmann TJ, et al (2010) Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation. Respir Res. 11:30. https://doi.org/10.1186/1465-9921-11-30

  • Choi J (2011) Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs. The University of Iowa, Iowa City

    Google Scholar 

  • Choi J, Tawhai MH, Hoffman EA, Lin CL (2009) On intra- and intersubject variabilities of airflow in the human lungs. Phys Fluids 21(10):101901. Epub 2009 Oct 13

    Article  ADS  Google Scholar 

  • Choi J, Xia G, Tawhai MH et al (2010) Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model. Ann Biomed Eng 38(12):3550–3571. https://doi.org/10.1007/s10439-010-0110-7. Epub 2010 Jul 8

    Article  Google Scholar 

  • Choi J, Hoffman EA, Lee CH et al (2013a) MDCT-based image matching for assessment of heterogeneity of regional ventilation and methacholine response in asthmatics. American Thoracic Society International Conference, May 17–22, Philadelphia, PA. Am J Respir Crit Care Med 187:A3740

    Google Scholar 

  • Choi J, Yin Y, Hoffman EA et al (2013b) Airflow in a multiscale subject-specific breathing human lung model. 66th APS division of fluid dynamics gallery of fluid motion, Nov. 24–26, Pittsburgh, PA. arXiv:1310.5057 [physics.flu-dyn]

    Google Scholar 

  • Choi S, Hoffman EA, Wenzel SE et al (2013c) Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics. J Appl Physiol 115:730–742

    Article  Google Scholar 

  • Choi S, Hoffman EA, Wenzel SE et al (2014) Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung volume variations in a multi-center study. J Appl Physiol 117:593–603

    Article  Google Scholar 

  • Choi S, Hoffman EA, Wenzel SE et al (2015) Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol 118:1286–1298

    Article  Google Scholar 

  • Choi S, Choi J, Hoffman EA et al (2016) Relationship between pulmonary airflow and resistance in patients with airway narrowing using an 1-D network resistance and compliance model. 69th APS Division of Fluid Dynamics, Nov. 20–22, Portland

    Google Scholar 

  • Choi J, Hoffman EA, Lin CL et al (2017a) Quantitative computed tomography determined regional lung mechanics in normal nonsmokers, normal smokers and metastatic sarcoma subjects. PLoS One 12(7):e0179812. https://doi.org/10.1371/journal.pone.0179812

    Article  Google Scholar 

  • Choi S, Hoffman EA, Wenzel SE et al (2017b) Quantitative computed tomographic imaging-based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J Allergy Clin Immunol 140:690–700 e698

    Article  Google Scholar 

  • Choi S, Haghighi B, Choi J et al (2017c) Differentiation of quantitative CT imaging phenotypes in asthma versus COPD. BMJ Open Resp Res 4(1):e000252

    Article  Google Scholar 

  • Choi S, Choi J, Lin CL (2018) Contributions of kinetic energy and viscous dissipation to airway resistance in pulmonary inspiratory and expiratory airflows in successive symmetric airway models with various bifurcation angles. J Biomech Eng 140(1):011010

    Article  Google Scholar 

  • Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795. https://doi.org/10.1056/NEJMp1500523. Epub 2015 Jan 30

    Article  Google Scholar 

  • Couper D, LaVange LM, Han M et al (2014) Design of the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax 69(5):491–494. https://doi.org/10.1136/thoraxjnl-2013-203897. Epub 2013 Sep 12

    Article  Google Scholar 

  • Crum WR, Hartkens T, Hill DL (2004) Non-rigid image registration: theory and practice. Br J Radiol 77 Spec No 2:S140–S153

    Google Scholar 

  • De Marco R, Pesce G, Marcon A et al (2013) The coexistence of asthma and chronic obstructive pulmonary disease (COPD): prevalence and risk factors in young, middle-aged and elderly people from the general population. PLoS One 8:e62985

    Article  ADS  Google Scholar 

  • Deo RC (2015) Machine learning in medicine. Circulation 132:1920–1930

    Article  Google Scholar 

  • Ellingwood ND, Yin Y, Smith M, Lin CL (2016) Efficient methods for implementation of multi-level nonrigid mass-preserving image registration on GPUs and multi-threaded CPUs. Comput Methods Prog Biomed 127:290–300. https://doi.org/10.1016/j.cmpb.2015.12.018. Epub 2016 Jan 6

    Article  Google Scholar 

  • Fuld MK, Halaweish AF, Newell JD Jr et al (2013) Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation. Investig Radiol 48(9):629–637. https://doi.org/10.1097/RLI.0b013e31828ad647

    Article  Google Scholar 

  • Galban CJ, Han MK, Boes JL (2012) Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med 18(11):1711–1715. https://doi.org/10.1038/nm.2971

    Article  Google Scholar 

  • Garcia-Aymerich J, Gómez FP, Benet M et al (2011) Identification and prospective validation of clinically relevant chronic obstructive pulmonary disease (COPD) subtypes. Thorax 66:430–437

    Article  Google Scholar 

  • Gibson P, Simpson J (2009) The overlap syndrome of asthma and COPD: what are its features and how important is it? Thorax 64:728–735

    Article  Google Scholar 

  • Gupta S, Hartley R, Khan UT et al (2014) Quantitative computed tomography-derived clusters: redefining airway remodeling in asthmatic patients. J Allergy Clin Immunol 133:729–738

    Article  Google Scholar 

  • Haghighi B, Ellingwood N, Yin Y et al (2017a) A GPU-based symmetric non-rigid image registration method in human lung. Med Biol Eng Comput. https://doi.org/10.1007/s11517-017-1690-2. Epub 2017 Aug 1 [ahead of print]

  • Haghighi B, Choi J, Choi S, et al. (2017b) Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers. 70th APS Division of Fluid Dynamics, Nov. 19–21, 2017, Denver

    Google Scholar 

  • Hoffman EA, Chon D (2005) Computed tomography studies of lung ventilation and perfusion. Proc Am Thorac Soc 2(6):492–498, 506

    Article  Google Scholar 

  • Hoffman EA, McLennan G (1997) Assessment of the pulmonary structure-function relationship and clinical outcomes measures: quantitative volumetric CT of the lung. Acad Radiol 4(11):758–776

    Article  Google Scholar 

  • Hoffman EA, Lynch DA, Barr RG et al (2016) Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes. J Magn Reson Imaging 43(3):544–557. https://doi.org/10.1002/jmri.25010. Epub 2015 Jul 22

    Article  Google Scholar 

  • Iyer KS, Newell JD Jr, Jin D et al (2016) Quantitative dual-energy computed tomography supports a vascular etiology of smoking-induced inflammatory lung disease. Am J Respir Crit Care Med 193(6):652–661. https://doi.org/10.1164/rccm.201506-1196OC

    Article  Google Scholar 

  • Jahani N, Yin Y, Hoffman EA, Lin CL (2014) Assessment of regional non-linear tissue deformation and air volume change of human lungs via image registration. J Biomech 47(7):1626–1633. https://doi.org/10.1016/j.jbiomech.2014.02.040. Epub 2014 Mar 13

    Article  Google Scholar 

  • Jahani N, Choi S, Choi J et al (2015) Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing. J Appl Physiol 119(10):1064–1074. https://doi.org/10.1152/japplphysiol.00339.2015. Epub 2015 Aug 27

    Article  Google Scholar 

  • Jahani N, Choi S, Choi J et al (2017) A four-dimensional computed tomography comparison of healthy and asthmatic human lungs. J Biomech 56:102–110. https://doi.org/10.1016/j.jbiomech.2017.03.012. Epub 2017 Mar 18

    Article  Google Scholar 

  • Kleinstreuer C, Zhang Z (2003) Laminar-to-turbulent fluid-particle flows in a human airway model. Int J Multiphase Flow 29(2):271–289

    Article  Google Scholar 

  • Kohonen T (1998) The self-organizing map. Neurocomputing 21(1):1–6. https://doi.org/10.1016/S0925-2312(98)00030-7

    Article  MathSciNet  MATH  Google Scholar 

  • Lambert AR, O’Shaughnessy PT, Tawhai MH et al (2011) Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci Technol 45(1):11–25. https://doi.org/10.1080/02786826.2010.517578

    Article  ADS  Google Scholar 

  • Ledford H (2016) Obama’s science legacy: betting big on biomedical science. Nature 536(7617):385–386. https://doi.org/10.1038/536385a

    Article  ADS  Google Scholar 

  • Lin CL, Tawhai MH, McLennan G, Hoffman EA (2007) Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 157(2–3):295–309. https://doi.org/10.1016/j.resp.2007.02.006. Epub 2007 Feb 14

    Article  Google Scholar 

  • Lin CL, Tawhai MH, McLennan G, Hoffman EA (2009) Computational fluid dynamics: multiscale simulation of gas flow in subject-specific models of the human lung. IEEE Eng Med Biol Mag 28(3):25–33. https://doi.org/10.1109/memb.2009.932480

    Article  Google Scholar 

  • Lin CL, Tawhai MH, Hoffman EA (2013) Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. Wiley Interdiscip Rev Syst Biol Med 5(5):643–655. https://doi.org/10.1002/wsbm.1234. Epub 2013 Jul 10

    Article  Google Scholar 

  • Longest PW, Tian G, Walenga RL, Hindle M (2012) Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res 29(6):1670–1688

    Article  Google Scholar 

  • Magoulas GD, Prentza A (2001) Machine learning in medical applications. Mach. Learning Appl. (Lecture Notes Comput. Sci.). Berlin/Heidelberg, Springer, 2049:300--307

    Google Scholar 

  • Mesko B (2017) The role of artificial intelligence in precision medicine. Expert Rev Precis Med Drug Dev 2(5):239–241. https://doi.org/10.1080/23808993.2017.1380516

  • Miyawaki S, Tawhai MH, Hoffman EA, Lin CL (2012) Effect of carrier gas properties on aerosol distribution in a CT-based human airway numerical model. Ann Biomed Eng 40(7):1495–1507

    Article  Google Scholar 

  • Miyawaki S, Choi S, Hoffman EA, Lin CL (2016a) A 4DCT imaging-based breathing lung model with relative hysteresis. J Comput Phys 326:76–90. https://doi.org/10.1016/j.jcp.2016.08.039. Epub 2016 Aug 31

    Article  ADS  MathSciNet  Google Scholar 

  • Miyawaki S, Hoffman EA, Lin CL (2016b) Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways. J Aerosol Sci 100:129–139. https://doi.org/10.1016/j.jaerosci.2016.07.006. Epub 2016 Jul 16

    Article  ADS  Google Scholar 

  • Miyawaki S, Tawhai MH, Hoffman EA et al (2017a) Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and~surface. Biomech Model Mechanobiol 16:583–596. https://doi.org/10.1007/s10237-016-0838-6

    Article  Google Scholar 

  • Miyawaki S, Hoffman EA, Lin CL (2017b) Numerical simulations of aerosol delivery to the human lung with an idealized laryngeal model, image-based airway model, and automatic meshing algorithm. Comput Fluids 148:1–9. https://doi.org/10.1016/j.compfluid.2017.02.008. Epub 2017 Feb 10

    Article  MathSciNet  MATH  Google Scholar 

  • Montaudon M, Lederlin M, Reich S et al (2009) Bronchial measurements in patients with asthma: comparison of quantitative thin-section CT findings with those in healthy subjects and correlation with pathologic findings. Radiology 253:844–853

    Article  Google Scholar 

  • Paoletti M, Camiciottoli G, Meoni E et al (2009) Explorative data analysis techniques and unsupervised clustering methods to support clinical assessment of chronic obstructive pulmonary disease (COPD) phenotypes. J Biomed Inform 42:1013–1021

    Article  Google Scholar 

  • Sieren JP, Newell JD Jr, Barr RG et al (2016) SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med 194(7):794–806

    Article  Google Scholar 

  • Tawhai MH, Lin CL (2011) Airway gas flow. Compr Physiol 1:1135–1157

    Google Scholar 

  • Tawhai MH, Pullan AJ, Hunter PJ (2000) Generation of an anatomically based three-dimensional model of the conducting airways. Ann Biomed Eng 28(7):793–802. https://doi.org/10.1114/1.1289457

    Article  Google Scholar 

  • Tawhai MH, Hunter P, Tschirren J et al (2004) CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J Appl Physiol 97(6):2310–2321. https://doi.org/10.1152/japplphysiol.00520.2004. Epub 2004 Aug 20

    Article  Google Scholar 

  • Tawhai MH, Hoffman EA, Lin CL (2009) The lung physiome: merging imaging-based measures with predictive computational models of structure and function. Wiley Interdiscip Rev Syst Biol Med 1(1):61–72

    Article  Google Scholar 

  • Uppaluri R, Mitsa T, Sonka M et al (1997) Quantification of pulmonary emphysema from lung computed tomography images. Am J Respir Crit Care Med 156(1):248–254

    Article  Google Scholar 

  • Uppaluri R, Hoffman EA, Sonka M et al (1999) Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648–254

    Article  Google Scholar 

  • van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    MATH  Google Scholar 

  • Wenzel SE, Busse WW (2007) Severe asthma: lessons from the severe asthma research program. J Allergy Clin Immunol 119:14–21

    Article  Google Scholar 

  • Wongviriyawong C, Harris RS, Greenblatt E et al (2013) Peripheral resistance: a link between global airflow obstruction and regional ventilation distribution. J Appl Physiol 114(4):504–514

    Article  Google Scholar 

  • Wu D, Tawhai MH, Hoffman EA, Lin CL (2014) A numerical study of heat and water vapor transfer in MDCT-based human airway models. Ann Biomed Eng 42(10):2117–2131. https://doi.org/10.1007/s10439-014-1074-9

    Article  Google Scholar 

  • Wu D, Miyawaki S, Tawhai MH et al (2015) A numerical study of water loss rate distributions in MDCT-based human airway models. Ann Biomed Eng 43(11):2708–2721. https://doi.org/10.1007/s10439-015-1318-3. Epub 2015 Apr 14

    Article  Google Scholar 

  • Xu Y, Sonka M, McLennan G et al (2006a) MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging 25(4):464–475

    Article  Google Scholar 

  • Xu Y, van Beek EJ, Hwanjo Y et al (2006b) Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol 13(8):969–978

    Article  Google Scholar 

  • Yang X, Pei J, Shi J (2014) Inverse consistent non-rigid image registration based on robust point set matching. Biomed Eng Online. 13 Suppl 2:S2. https://doi.org/10.1186/1475-925X-13-S2-S2. Epub 2014 Dec 11

  • Yin Y, Hoffman EA, Lin CL (2009) Mass preserving nonrigid registration of CT lung images using cubic B-spline. Med Phys 36:4213–4222

    Article  Google Scholar 

  • Yin Y, Choi J, Hoffman EA et al (2010) Simulation of pulmonary air flow with a subject-specific boundary condition. J Biomech 43(11):2159–2163. https://doi.org/10.1016/j.jbiomech.2010.03.048

    Article  Google Scholar 

  • Yin Y, Choi J, Hoffman EA et al (2013) A multiscale MDCT image-based breathing lung model with time-varying regional ventilation. J Comput Phys 244:168–192

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang Z, Kleinstreuer C, Kim CS (2002) Micro-particle transport and deposition in a human oral airway model. J Aerosol Sci 33(12):1635–1652

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants U01-HL114494, R01 HL094315, R01-HL112986, and S10-RR022421 as well as Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03034157). We also thank the San Diego Supercomputer Center (SDSC), the Texas Advanced Computing Center (TACC), and XSEDE sponsored by the National Science Foundation for the computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Long Lin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lin, CL., Choi, S., Haghighi, B., Choi, J., Hoffman, E.A. (2018). Cluster-Guided Multiscale Lung Modeling via Machine Learning. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics