Skip to main content

Multiscale Modeling of Blood Flow-Mediated Platelet Thrombosis

  • Living reference work entry
  • First Online:
Book cover Handbook of Materials Modeling

Abstract

The blood coagulation cascade that leads to thrombus formation may be initiated by flow-induced platelet activation, which prompts clot formation in prosthetic cardiovascular devices and in arterial disease processes. Upon activation, platelets undergo complex morphological changes of filopodia formation that play a major role in aggregation and attachment to surfaces. Numerical simulations based on continuum approaches fail to capture such molecular-scale mechano-transduction processes. Utilizing molecular dynamics (MD) to model these complex processes across the scales is computationally prohibitive. We describe multiscale numerical methodologies that integrate four key components of blood clotting, namely, blood rheology, cell mechanics, coagulation kinetics and transport of species, and platelet adhesive dynamics across a wide range of spatiotemporal scales. Whereas mechanics of binding/unbinding for single-molecule receptor-ligand complexes can be simulated by molecular dynamics (MD), the mechanical structure of platelets in blood flow and their interaction with flow-induced stresses that may lead to their activation can be efficiently described by a model at coarser scales, using numerical approaches such as coarse-grained molecular dynamics (CGMD). Additionally, CGMD provides an excellent platform to inform other coarser-scale models in a bottom-up approach in the multiscale hierarchy. The microenvironment of most biological systems such as coagulation normally involves a large number of cells, e.g., blood cells suspended in plasma, limiting the utility of CGMD at the larger transport scales of blood flow. However, dissipative particle dynamics (DPD), along with its sub-models such as energy conserving and transport DPD, provides a very flexible platform for scaling up these mesoscopic systems. At the macroscopic top scales of the vasculature and cardiovascular devices, simulating blood and tissues using continuum-based methods becomes viable and efficient. However, the challenge of interfacing these larger transport scales with the orders of magnitude smaller spatiotemporal scales that characterize blood coagulation, and given the issue of the slow-dynamic timescales of biological processes, makes long-term simulations of such systems computationally prohibitive. In this chapter, we describe various numerical remedies based on these methodologies that facilitate overcoming this multiscale simulation challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albert R, Barabasi AL, Carle N, Dougherty A (1998) Driven interfaces in disordered media: determination of universality classes from experimental data. Phys Rev Lett 81(14):2926–2929

    Article  ADS  Google Scholar 

  • Alon R, Chen S, Puri KD, Finger EB, Springer TA (1997) The kinetics of l-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol 138(5):1169–1180

    Article  Google Scholar 

  • Alon R, Chen S, Fuhlbrigge R, Puri KD, Springer TA (1998) The kinetics and shear threshold of transient and rolling interactions of l-selectin with its ligand on leukocytes. Proc Natl Acad Sci 95(20):11631–11636

    Article  ADS  Google Scholar 

  • Bell GI (1978) Models for specific adhesion of cells to cells. Science 200(4342):618–627

    Article  ADS  Google Scholar 

  • Berk D, Evans E (1991) Detachment of agglutinin-bonded red-blood-cells. 3. Mechanical analysis for large contact areas. Biophys J 59(4):861–872

    Article  Google Scholar 

  • Bluestein D, Soares JS, Zhang P, Gao C, Pothapragada S, Zhang N, Slepian MJ, Deng Y (2014) Multiscale modeling of flow induced thrombogenicity with dissipative particle dynamics and molecular dynamics. J Med Devices 8(2):0209541–0209542

    Article  Google Scholar 

  • Boek ES, Coveney PV, Lekkerkerker HNW (1996) Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J Phys Condens Matter 8(47):9509–9512

    Article  ADS  Google Scholar 

  • Boryczko K, Dzwinel W, Yuen DA (2003) Dynamical clustering of red blood cells in capillary vessels. J Mol Model 9(1):16–33

    Article  Google Scholar 

  • Boryczko K, Dzwinel W, Yuen DA (2004) Modeling fibrin aggregation in blood flow with discrete-particles. Comput Methods Prog Biomed 75(3):181–194

    Article  Google Scholar 

  • Chen J, Abdelgawad M, Yu L, Shakiba N, Chien WY, Lu Z, Geddie WR, Jewett MA, Sun Y (2011) Electrodeformation for single cell mechanical characterization. J Micromech Microeng 21(5):054012

    Article  Google Scholar 

  • Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821

    Article  ADS  Google Scholar 

  • Dembo M, Torney DC, Saxman K, Hammer D (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc London Ser B Biol Sci 234(1274):55–83

    Article  ADS  Google Scholar 

  • Dong C, Cao J, Struble EJ, Lipowsky HH (1999) Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng 27(3):298–312

    Article  Google Scholar 

  • Dwinzel W, Yuen DA, Boryczko K (2002) Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. J Mol Model 8(1):33–43

    Article  Google Scholar 

  • Dzwinel W, Boryczko K, Yuen DA (2003) A discrete-particle model of blood dynamics in capillary vessels. J Colloid Interface Sci 258(1):163–173

    Article  ADS  MATH  Google Scholar 

  • Espanol P (1998) Fluid particle model. Phys Rev E 57(3):2930–2948

    Article  ADS  Google Scholar 

  • Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191

    Article  ADS  Google Scholar 

  • Evans EA (1985a) Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges. Biophy J 48(1):175–183

    Google Scholar 

  • Evans EA (1985b) Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys J 48(1):185–192

    Google Scholar 

  • Fedosov DA, Karniadakis GE (2009) Triple-decker: interfacing atomistic-mesoscopic-continuum flow regimes. J Comput Phys 228(4):1157–1171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fogelson AL, Neeves KB (2015) Fluid mechanics of blood clot formation. Ann Rev Fluid Mech 47:377–403

    Article  ADS  MathSciNet  Google Scholar 

  • Fogelson AL, Tania N (2005) Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation. Pathophysiol Haemost Thromb 34(2–3):91–108

    Article  Google Scholar 

  • Gao C, Zhang P, Marom G, Deng YF, Bluestein D (2017) Reducing the effects of compressibility in DPD-based blood flow simulations through severe stenotic microchannels. J Comput Phys 335:812–827

    Article  ADS  MathSciNet  Google Scholar 

  • Grinberg L, Fedosov DA, Karniadakis GE (2013) Parallel multiscale simulations of a brain aneurysm. J Comput Phys 244:131–147

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grinberg L, Deng M, Karniadakis GE, Yakhot A (2014) Window proper orthogonal decomposition: application to continuum and atomistic data. In: Reduced order methods for modeling and computational reduction. Springer, Cham, pp 275–303

    MATH  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  ADS  Google Scholar 

  • Grubmüller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271(5251):997–999

    Article  ADS  Google Scholar 

  • Hammer DA, Apte SM (1992) Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J 63(1):35–57

    Article  Google Scholar 

  • Hammer DA, Lauffenburger DA (1987) A dynamical model for receptor-mediated cell adhesion to surfaces. Biophys J 52(3):475–87

    Article  Google Scholar 

  • Han G, Deng Y, Glimm J, Martyna G (2007) Error and timing analysis of multiple time-step integration methods for molecular dynamics. Comput Phys Commun 176(4):271–291

    Article  ADS  MATH  Google Scholar 

  • Hou TY, Wu XH (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134(1):169–189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jackson SP (2007) The growing complexity of platelet aggregation. Blood 109(12):5087–95

    Article  Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London Ser A 102(715):161–179

    Article  ADS  MATH  Google Scholar 

  • Keaveny EE, Pivkin IV, Maxey M, Karniadakis GE (2005) A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows. J Chem Phys 123(10):104107

    Article  ADS  Google Scholar 

  • Kechagia PE, Tsimpanogiannis IN, Yortsos YC, Lichtner PC (2002) On the upscaling of reaction-transport processes in porous media with fast or finite kinetics. Chem Eng Sci 57(13):2565–2577

    Article  Google Scholar 

  • Kim J, Hudson NE, Springer TA (2015) Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proc Natl Acad Sci 112(15):4648–4653

    Article  ADS  Google Scholar 

  • Koplik J, Banavar JR (1995a) Continuum deductions from molecular hydrodynamics. Ann Rev Fluid Mech 27:257–292

    Article  ADS  Google Scholar 

  • Koplik J, Banavar JR (1995b) Corner flow in the sliding plate problem. Phys Fluids 7(12):3118–3125

    Article  ADS  MATH  Google Scholar 

  • Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood 88(5):1525–1541

    Google Scholar 

  • Ladd AJC, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Statist Phys 104(5–6):1191–1251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lauffenburger DA, Linderman J, Berkowitz L (1987) Analysis of mammalian cell growth factor receptor dynamics. Ann N Y Acad Sci 506:147–62

    Article  ADS  Google Scholar 

  • Leung SL, Lu Y, Bluestein D, Slepian MJ (2015) Dielectrophoresis-mediated electrodeformation as a means of determining individual platelet stiffness. Ann Biomed Eng 44(4):903–913

    Article  Google Scholar 

  • Li Z, Yazdani A, Tartakovsky A, Karniadakis GE (2015) Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. J Chem Phys 143(1):014101

    Article  ADS  Google Scholar 

  • Linderman JJ, Lauffenburger DA (1986) Analysis of intracellular receptor/ligand sorting. Calculation of mean surface and bulk diffusion times within a sphere. Biophys J 50(2):295–305

    Article  Google Scholar 

  • Linderman JJ, Lauffenburger DA (1988) Analysis of intracellular receptor/ligand sorting in endosomes. J Theoret Biol 132(2):203–245

    Article  MathSciNet  Google Scholar 

  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP (2007) Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109(2):566–576

    Article  Google Scholar 

  • Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34(1):57–64

    MATH  Google Scholar 

  • Moulton JD, Dendy JE, Hyman JM (1998) The black box multigrid numerical homogenization algorithm. J Comput Phys 142(1):80–108

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • N’Dri NA, Shyy W, Tran-Son-Tay R (2003) Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J 85(4):2273–2286

    Article  Google Scholar 

  • Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673

    Article  Google Scholar 

  • Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comput Phys 207(1):114–128

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Pivkin IV, Karniadakis GE (2006) Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. J Chem Phys 124(18):184101

    Article  ADS  Google Scholar 

  • Pivkin IV, Richardson PD, Karniadakis G (2006) Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc Natl Acad Sci 103(46):17164–17169

    Article  ADS  Google Scholar 

  • Pothapragada S, Zhang P, Sheriff J, Livelli M, Slepian MJ, Deng Y, Bluestein D (2015) A phenomenological particle-based platelet model for simulating filopodia formation during early activation. Int J Numer Methods Biomed Eng 31(3):e02702

    Article  Google Scholar 

  • Qian TZ, Wang XP (2005) Driven cavity flow: from molecular dynamics to continuum hydrodynamics. Multiscale Model Simul 3(4):749–763

    Article  MathSciNet  MATH  Google Scholar 

  • Revenga M, Zuniga I, Espanol P (1999) Boundary conditions in dissipative particle dynamics. Comput Phys Commun 122:309–311

    Article  ADS  Google Scholar 

  • Schneider S, Nuschele S, Wixforth A, Gorzelanny C, Alexander-Katz A, Netz R, Schneider M (2007) Shear-induced unfolding triggers adhesion of von willebrand factor fibers. Proc Natl Acad Sci 104(19):7899–7903

    Article  ADS  Google Scholar 

  • Serrano M, Espanol P (2001) Thermodynamically consistent mesoscopic fluid particle model. Phys Rev E 64(4 Pt 2):046115

    Article  ADS  Google Scholar 

  • Sheriff J, Soares JS, Xenos M, Jesty J, Bluestein D (2013) Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann Biomed Eng 41(6):1279–1296

    Article  Google Scholar 

  • Shyy W, Francois M, Udaykumar H, N’Dri N, Tran-Son-Tay R (2001) Moving boundaries in micro-scale biofluid dynamics. Appl Mech Rev 5:405–453

    Article  ADS  Google Scholar 

  • Skalak R, Keller SR, Secomb TW (1981a) Mechanics of blood-flow. J Biomech Eng 103(2): 102–115

    Article  Google Scholar 

  • Skalak R, Zarda PR, Jan KM, Chien S (1981b) Mechanics of rouleau formation. Biophys J 35(3):771–781

    Article  Google Scholar 

  • Skalak R, Ozkaya N, Skalak TC (1989) Biofluid mechanics. Ann Rev Fluid Mech 21:167–204

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Skeel RD, Izaguirre JA (2002) An impulse integrator for Langevin dynamics. Mol Phys 100(24):3885–3891

    Article  ADS  Google Scholar 

  • Soddemann T, Dnweg B, Kremer K (2003) Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E 68(4):046702

    Article  ADS  Google Scholar 

  • Sorensen EN, Burgreen GW, Wagner WR, Antaki JF (1999) Computational simulation of platelet deposition and activation: I. Model development and properties. Ann Biomed Eng 27(4): 436–448

    Article  Google Scholar 

  • Springer TA (2014) Von willebrand factor, jedi knight of the bloodstream. Blood 124(9): 1412–1425

    Article  Google Scholar 

  • Sweet CR, Chatterjee S, Xu Z, Bisordi K, Rosen ED, Alber M (2011) Modelling platelet-blood flow interaction using the subcellular element Langevin method. J R Soc Interface 8(65): 1760–1771

    Article  Google Scholar 

  • Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2(3):367–450

    MathSciNet  MATH  Google Scholar 

  • Weiss L (1990) Metastatic inefficiency. Adv Cancer Res 54:159–211

    Article  ADS  Google Scholar 

  • Xu Z, Lioi J, Mu J, Kamocka MM, Liu X, Chen DZ, Rosen ED, Alber M (2010) A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys J 98(9):1723–1732

    Article  Google Scholar 

  • Yazdani A, Li H, Humphrey JD, Karniadakis GE (2017) A general shear-dependent model for thrombus formation. PLoS Comput Biol 13(1):e1005291

    Article  ADS  Google Scholar 

  • Zhang P, Gao C, Zhang N, Slepian MJ, Deng Y, Bluestein D (2014) Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell Mol Bioeng 7(4):552–574

    Article  Google Scholar 

  • Zhang P, Zhang N, Deng Y, Bluestein D (2015) A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma. J Comput Phys 284:668–686

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhang P, Zhang N, Gao C, Zhang L, Gao Y, Deng Y, Bluestein D (2016) Scalability test of multiscale fluid-platelet model for three top supercomputers. Comput Phys Commun 204: 132–140

    Article  ADS  Google Scholar 

  • Zhang P, Zhang L, Slepian MJ, Deng Y, Bluestein D (2017) A multiscale biomechanical model of platelets: correlating with in-vitro results. J Biomech 50:26–33

    Article  Google Scholar 

  • Zhu C (2000) Kinetics and mechanics of cell adhesion. J Biomech 33(1):23–33

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants U01HL116323 (Yazdani, A.), NHLBI R21HL096930-01, NIBIB Quantum U01EB012487, and NHLBI U01HL131052 (Bluestein, D.) and XSEDE grants DMS140019, DMS150011 (Zhang, P.), and DMS140007 (Yazdani, A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yazdani, A., Zhang, P., Sheriff, J., Slepian, M.J., Deng, Y., Bluestein, D. (2018). Multiscale Modeling of Blood Flow-Mediated Platelet Thrombosis. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_69-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics