Skip to main content

Computational Fluid Dynamics of Catalytic Reactors

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Today, the challenge in chemical and material synthesis is not only the development of new catalysts and supports to synthesize a desired product, but also the understanding of the interaction of the catalyst with the surrounding flow field. Computational Fluid Dynamics or CFD is the analysis of fluid flow, heat and mass transfer and chemical reactions by means of computer-based numerical simulations. CFD has matured into a powerful tool with a wide range of applications in industry and academia. From a reaction engineering perspective, main advantages are reduction of time and costs for reactor design and optimization, and the ability to study systems where experiments can hardly be performed, e.g., hazardous conditions or beyond normal operation limits. However, the simulation results will always remain a reflection of the uncertainty in the underlying models and physicochemical parameters so that in general a careful experimental validation is required.

This chapter introduces the application of CFD simulations in heterogeneous catalysis. Catalytic reactors can be classified by the geometrical design of the catalyst material (e.g. monoliths, particles, pellets, washcoats). Approaches for modeling and numerical simulation of the various catalyst types are presented. Focus is put on the principal concepts for coupling the physical and chemical processes on different levels of details, and on illustrative applications. Models for surface reaction kinetics and turbulence are described and an overview on available numerical methods and computational tools is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bird RB, Stewart WE, Lightfoot EN (2001) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Blasi JM, Weddle PJ, Karakaya C, Diercks DR, Kee RJ (2016) Modeling reaction-diffusion processes within catalyst washcoats: II. Macroscale processes informed by microscale simulations. Chem Eng Sci 145:308–316

    Article  Google Scholar 

  • Choudary C, Mazumder S (2014) Direct numerical simulation of catalytic combustion in a multi-channel monolith reactor using personal computers with emerging architectures. Comput Chem Eng 61:175–184

    Article  Google Scholar 

  • Cornejo I, Nikrityuk P, Hayes RE (2018) Multiscale RANS-based modeling of the turbulence decay inside of an automotive catalytic converter. Chem Eng Sci 175:377–386

    Article  Google Scholar 

  • Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (2011) Multiphase flows with droplets and particles, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Dixon AG, Taskin ME, Nijemeisland M, Stitt EH (2011) Systematic mesh development for 3D CFD simulation of fixed beds: single sphere study. Comput Chem Eng 35(7):1171–1185

    Article  Google Scholar 

  • Dudukovic MP (2009) Frontiers in reactor engineering. Science 325:698–701

    Article  ADS  Google Scholar 

  • Dybbs A, Edwards R (1984) A new look at porous media fluid mechanics – darcy to turbulent. In: Bear J, Corapcioglu M (eds) Fundamentals of transport phenomena in porous media. Vol. 82 of NATO ASI series. Springer, Netherlands, pp 199–256

    Chapter  Google Scholar 

  • Fox RO (2003) Computational methods for turbulent reacting flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Habisreuther P, Djordjevic N, Zarzalis N (2009) Statistical distribution of residence time and tortuosity of flow through open-cell foams. Chem Eng Sci 64(23):4943–4954

    Article  Google Scholar 

  • Hayes RE, Kolaczkowski ST (1997) Introduction to catalytic combustion. Gordon and Breach Science Publ, Amsterdam

    Google Scholar 

  • Hayes RE, Fadic A, Mmbaga J, Najafi A (2012) CFD modelling of the automotive catalytic converter. Catal Today 188:94–105

    Article  Google Scholar 

  • Hettel M, Diehm C, Bonart H, Deutschmann O (2015) Numerical simulation of a structured catalytic methane reformer by DUO: the new computational interface for OpenFOAM® and DETCHEM™. Catal Today 258:230–240

    Article  Google Scholar 

  • Hettel M, Denev JA, Deutschmann O (2016) Two-zone fluidized bed reactors for butadiene Production: a multiphysical approach with solver coupling for supercomputing application. In: Nagel W, Kröner D, Resch M (eds) High performance computing in science and engineering ’16. Springer International Publish AG, Cham

    Chapter  Google Scholar 

  • Hettel M, Daymo E, Deutschmann O (2018) 3D modeling of a CPOX-reformer including detailed chemistry and radiation effects with DUO. Comput Chem Eng 109:166–178

    Article  Google Scholar 

  • Hjertager BH (2007) Multi-fluid CFD analysis of chemical reactors. In: Marchisio DL, Fox RO (eds) Multiphase reacting flows: modelling and simulation. Springer, Vienna, pp 125–179

    Chapter  Google Scholar 

  • Ishii M, Hibiki T (2006) Thermo-fluid dynamics of two-phase flow. Springer, New York/ London

    Book  Google Scholar 

  • Jakobsen HA (2008) Chemical reactor modeling: multiphase reactive flows. Springer, Berlin

    Google Scholar 

  • Karakaya C, Weddle PJ, Blasi JM, Diercks DR, Kee RJ (2016) Modeling reaction-diffusion processes within catalyst washcoats: I. Microscale processes based on three-dimensional reconstructions. Chem Eng Sci 145:299–307

    Article  Google Scholar 

  • Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow. Wiley, New Jersey

    Book  Google Scholar 

  • Kerkhof P, Geboers, MAM (2005) Towards a unified theory of isotropic molecular transport phenomena. Am Inst Chem Eng J 51:79–121

    Article  Google Scholar 

  • Korup O, Mavlyankariev S, Geske M, Goldsmith CF, Horn R (2011) Measurement and analysis of spatial reactor profiles in high temperature catalysis research. Chem Eng Process Process Intensif 50(10):998–1009

    Article  Google Scholar 

  • Kumar A, Mazumder S (2010) Toward simulation of full-scale monolithic catalytic converters with complex heterogeneous chemistry. Comput Chem Eng 34:135–145

    Article  Google Scholar 

  • Kuroki M, Ookawara S, Ogawa K (2009) A high-fidelity CFD model of methane steam reforming in a packed bed reactor. J Chem Eng Jpn 42(supplement):s73–s78

    Article  Google Scholar 

  • Lemos MJS (2006) Turbulence in porous media, modeling and applications. Elsevier, Amsterdam

    Google Scholar 

  • Libby PA, Williams FA (eds) (1994) Turbulent reacting flows. Academic Press, London

    MATH  Google Scholar 

  • Maestri M, Beretta A, Groppi G, Tronconi E, Forzatti P (2005) Comparison among structured and packed-bed reactors for the catalytic partial oxidation of CH4 at short contact times. Catal Today 105:709–717

    Article  Google Scholar 

  • Marchisio DL, Fox RO (2013) Computational models for polydisperse particulate and multiphase systems. Cambridge series in chemical engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202

    Article  Google Scholar 

  • Nien T, Mmbaga JP, Hayes RE, Votsmeier M (2013) Hierarchical multi-scale model reduction in the simulation of catalytic converters. Chem Eng Sci 93:362–375

    Article  Google Scholar 

  • Önsan ZI, Avci AK (2016) Multiphase catalytic reactors theory, design, manufacturing, and applications. Wiley, Hoboken

    Book  Google Scholar 

  • OpenFOAM-The Open Source CFD Toolbox (2017) www.openfoam.org

  • Oran ES, Boris JP (1987) Numerical simulation of reactive flow. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Park HM (2018) A multiscale modeling of fixed bed catalytic reactors. Int J Heat Mass Transf 116:520–531

    Article  Google Scholar 

  • Patankar SV (1990) Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal science. McGraw-Hill, New York

    Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press, London

    Book  Google Scholar 

  • Poinsot T, Veynante D (2001) Theoretical and numerical combustion. R. T. Edwards, Inc., Philadelphia

    Google Scholar 

  • Porter S, Saul J, Aleksandrova S, Medina H, Benjamin S (2016) Hybrid flow modelling approach applied to automotive catalysts. Appl Math Model 40:8435–8445

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, London

    Book  Google Scholar 

  • Radl S, Forgber T, Kloss C, Aigner A (2015) ParScale - a compilation of particle scale models. https://github.com/CFDEMproject/ParScale-PUBLIC

  • Schneiderbauer S, Puttinger S, Pirker S, Aguayo P, Kanellopoulos V (2015) CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors. Chem Eng J 264:99–112

    Article  Google Scholar 

  • Sharma AK, Birgersson E (2016) Validity and scalability of an asymptotically reduced single-channel model for full-size catalytic monolith converters. Appl Math Comput 281:186–198

    MathSciNet  Google Scholar 

  • Sommerfeld M, van Wachem B, Oliemans R (2008) Best practice guidelines for computational fluid dynamics of dispersed multiphase flows. ERCOFTAC, SIAMUF Swedish Industrial Association for Multiphase Flows

    Google Scholar 

  • Sommerfeld M (2017) Numerical methods for dispersed multiphase flows. In: Bodnár T, Galdi GP, Nečasová Š (eds) Particles in flows. Springer, Cham, pp 327–396

    Chapter  Google Scholar 

  • Sui R, Prasianakis NI, Mantzaras J, Mallya N, Theile J, Lagrange D, Friess M (2016) An experimental and numerical investigation of the combustion and heat transfer characteristics of hydrogen-fueled catalytic microreactors. Chem Eng Sci 141:214–230

    Article  Google Scholar 

  • Tischer S, Deutschmann O (2005) Recent advances in numerical modeling of catalytic monolith reactors. Catal Today 105:407–413

    Article  Google Scholar 

  • Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics, 2nd edn. Pearson, London

    Google Scholar 

  • Wang TF, Wang JF, Jin Y (2007) Slurry reactors for gas-to-liquid processes: a review. Ind Eng Chem Res 46:5824–5847

    Article  Google Scholar 

  • Warnatz J, Dibble RW, Maas U (1996) Combustion, physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. Springer, New York

    MATH  Google Scholar 

  • Wehinger G (2016) Particle-resolved CFD simulations of catalytic flow reactors. PhD Thesis, Technical University Berlin

    Google Scholar 

  • Wehinger G, Heitmann H, Kraume M (2016) An artificial structure modeler for 3D CFD simulations of catalytic foams. Chem Eng J 284:543–556

    Article  Google Scholar 

  • Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlögl R, Behrens M, Horn R (2016b) Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AICHE J 62:4436–4452

    Article  Google Scholar 

  • Wilcox CC (1998) Turbulence modeling for CFD. DCW Industries, La Canada, California, United States

    Google Scholar 

  • Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  Google Scholar 

  • Woo M, Wörner M, Maier L, Tischer S, Deutschmann O (2017) A numerical study on gas-liquid Taylor flow for catalytic hydrogenation of nitrobenzene with detailed kinetic mechanism, annual meeting ProcessNet section multiphase flow, March 14–15, 2017, Dresden, Germany, https://doi.org/10.5445/IR/1000068709

  • Yeoh GH, Cheung CP, Tu J (2014) Multiphase flow analysis using population balance modeling. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Zhong W, Yu A, Zhou G, Xie J, Zhang H (2016) CFD simulation of dense particulate reaction system: approaches, recent advances and applications. Chem Eng Sci 140:16–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Deutschmann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hettel, M., Wörner, M., Deutschmann, O. (2018). Computational Fluid Dynamics of Catalytic Reactors. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics